Question Number 136060 by mnjuly1970 last updated on 18/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:\:{evaluate}:: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\mathrm{Im}\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {li}_{\mathrm{2}} \left({sin}\left({x}\right)\right)+{li}_{\mathrm{2}} \left({csc}\left({x}\right)\right){dx}\right) \\ $$$$ \\ $$ Answered by mindispower…
Question Number 136036 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$ Commented by Ajetunmobi last updated on 18/Mar/21…
Question Number 136034 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$ \\ $$ Answered by mathmax by abdo…
Question Number 4957 by ankit chakravarti last updated on 26/Mar/16 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left\{\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right\}{dx}=? \\ $$ Commented by ankit chakravarti last…
Question Number 136023 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$ Commented by yutytfjh67ihd last updated on 25/Mar/21…
Question Number 70482 by Mikaell last updated on 04/Oct/19 $$\int\frac{{sin}^{\mathrm{3}} {x}}{\:\sqrt{{cosx}}}{dx} \\ $$ Commented by kaivan.ahmadi last updated on 04/Oct/19 $${u}={cosx}\Rightarrow{du}=−{sinxdx} \\ $$$${sin}^{\mathrm{3}} {x}={sinxsin}^{\mathrm{2}} {x}={sinx}\left(\mathrm{1}−{cos}^{\mathrm{2}}…
Question Number 70483 by Mikaell last updated on 04/Oct/19 $$\int\frac{{ln}\mathrm{2}{x}}{{ln}\mathrm{4}{x}}.\frac{{dx}}{{x}} \\ $$ Commented by peter frank last updated on 04/Oct/19 $${thankx} \\ $$ Commented by…
Question Number 135996 by mnjuly1970 last updated on 17/Mar/21 Answered by Dwaipayan Shikari last updated on 17/Mar/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} }{dx} \\…
Question Number 70446 by oyemi kemewari last updated on 04/Oct/19 Commented by oyemi kemewari last updated on 04/Oct/19 please help me solve this question Commented by mathmax by abdo last…
Question Number 4900 by prakash jain last updated on 19/Mar/16 $$\int_{{n}} ^{\:{n}+\mathrm{1}} {f}\left({x}\right)\mathrm{d}{x},\:{n}\in\mathbb{N} \\ $$$${where}\:{f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\prod}}\left({x}−{i}\right) \\ $$$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{integrated}\:\mathrm{with}\:\mathrm{evaluating}\:\mathrm{the} \\ $$$$\mathrm{product}? \\ $$ Commented by…