Menu Close

Category: Integration

J-d-tan-cot-sec-csc-

Question Number 129173 by bramlexs22 last updated on 13/Jan/21 J=dθtanθ+cotθ+secθ+cscθ? Answered by liberty last updated on 13/Jan/21 J=dθsinθ+1cosθ+cosθ+1sinθ=cosθsinθdθsin2θ+sinθ+cos2θ+cosθ$$\:\mathrm{J}\:=\:\int\:\frac{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{d}\theta}{\mathrm{1}+\mathrm{sin}\:\theta+\mathrm{cos}\:\theta}\:=\:\int\:\frac{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\theta}{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}\mathrm{d}\theta…

Question-63615

Question Number 63615 by aliesam last updated on 06/Jul/19 Commented by mathmax by abdo last updated on 06/Jul/19 $${changement}\:\:{x}=−{t}\:\:{give}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{xln}\left(\mathrm{1}+\mathrm{10}^{{x}} \right){dx}\:=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:\left(−{t}\right){ln}\left(\mathrm{1}+\mathrm{10}^{−{t}} \right)\left(−{dt}\right)…

ln-x-x-2-dx-

Question Number 129060 by benjo_mathlover last updated on 12/Jan/21 ϕ=ln(x)x2dx Answered by liberty last updated on 12/Jan/21 letln(x)=hx=eh$$\:\phi\:=\:\int\:\frac{\mathrm{h}}{\mathrm{e}^{\mathrm{2h}} }\:\left(\mathrm{e}^{\mathrm{h}} \:\mathrm{dh}\:\right)=\:\int\:\mathrm{h}.\mathrm{e}^{−\mathrm{h}}…