Menu Close

Category: Integration

1-find-dx-x-1-2-x-3-4-2-deduce-the-decomposition-of-F-x-1-x-1-2-x-3-4-

Question Number 135957 by mathmax by abdo last updated on 17/Mar/21 $$\left.\mathrm{1}\right)\:\mathrm{find}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{decomposition}\:\mathrm{of}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$ Answered by Dwaipayan Shikari last…

Evaluate-1-0-1-0-x-0-y-3x-2-2y-2-3z-2-dxdydz-2-2x-2-3-dx-3-x-5-x-2-10x-2-dx-

Question Number 135932 by Engr_Jidda last updated on 17/Mar/21 $${Evaluate}\:\left(\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{x}} \int_{\mathrm{0}} ^{{y}} \left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −\mathrm{3}{z}^{\mathrm{2}} \right){dxdydz} \\ $$$$\left(\mathrm{2}\right)\:\int\left(\mathrm{2}{x}−\mathrm{2}\right)^{\mathrm{3}} {dx} \\ $$$$\left(\mathrm{3}\right)\:\int\left(\frac{{x}−\mathrm{5}}{{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{2}}\right){dx}…

Hello-si-x-x-sin-x-x-dx-show-0-x-a-1-si-x-dx-a-sin-pia-2-a-hint-ipp-complex-Analysis-

Question Number 70361 by mind is power last updated on 03/Oct/19 $${Hello}\: \\ $$$${si}\left({x}\right)=−\int_{{x}} ^{\infty} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$$${show}\:\int_{\mathrm{0}} ^{+\infty} {x}^{{a}−\mathrm{1}} {si}\left({x}\right){dx}=−\frac{\Gamma\left({a}\right){sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}{{a}} \\ $$$${hint}\:{ipp}\:+{complex}\:{Analysis} \\ $$…

Question-135888

Question Number 135888 by mnjuly1970 last updated on 16/Mar/21 Answered by mindispower last updated on 19/Mar/21 $${recal}\:\chi_{\mathrm{2}} \left({x}\right)=\frac{{li}_{\mathrm{2}} \left({x}\right)−{li}_{\mathrm{2}} \left(−{x}\right)}{\mathrm{2}},{chi}\:{function} \\ $$$${we}\:{have}\:\chi_{\mathrm{2}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)+\chi_{\mathrm{2}} \left({x}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}+\frac{{ln}\left({x}\right){ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)}{\mathrm{2}}…