Question Number 70262 by mathmax by abdo last updated on 02/Oct/19 $${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosx}\right){dx}\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sinx}\right){dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 135784 by benjo_mathlover last updated on 16/Mar/21 $${Given}\:\begin{cases}{{f}\left(\mathrm{3}\right)=\mathrm{4}\:,\:{f}\:'\left(\mathrm{3}\right)=−\mathrm{2}}\\{{f}\left(\mathrm{8}\right)=\mathrm{5}\:,\:{f}\:'\left(\mathrm{8}\right)=\mathrm{3}}\end{cases} \\ $$$${find}\:\int_{\mathrm{3}} ^{\:\mathrm{8}} \:{x}\:{f}\:''\left({x}\right)\:{dx}\:. \\ $$ Answered by Ar Brandon last updated on 16/Mar/21 $$\int_{\mathrm{3}}…
Question Number 135777 by mathmax by abdo last updated on 15/Mar/21 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{nx}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{e}^{\mathrm{n}^{\mathrm{2}} } \mathrm{U}_{\mathrm{n}} \\ $$ Answered by mathmax…
Question Number 70237 by mathmax by abdo last updated on 02/Oct/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:{with}\:\alpha\:{real} \\ $$ Commented by mind is power last updated on…
Question Number 70230 by ozodbek last updated on 02/Oct/19 Commented by Kunal12588 last updated on 02/Oct/19 $${Is}\:{it}\:\int{x}^{{x}^{{x}} } {x}^{{x}} {x}\:{dx}\:? \\ $$ Commented by Kunal12588…
Question Number 135753 by BHOOPENDRA last updated on 15/Mar/21 Commented by bramlexs22 last updated on 16/Mar/21 $$ \\ $$🤔😎😅 Answered by MJS_new last updated on…
Question Number 135737 by Ar Brandon last updated on 15/Mar/21 $$\int_{−\mathrm{2}\pi} ^{\mathrm{4}\pi} \frac{\mathrm{3}}{\mathrm{5}−\mathrm{4cosx}}\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on 15/Mar/21 $$\Phi=\int_{−\mathrm{2}\pi}…
Question Number 135697 by BHOOPENDRA last updated on 15/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 135693 by liberty last updated on 15/Mar/21 $$\Omega\:=\:\int\:\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }\:{dx}\: \\ $$ Answered by MJS_new last updated on 15/Mar/21 $$\int\frac{{x}−\mathrm{1}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx}= \\…
Question Number 70150 by necxxx last updated on 01/Oct/19 $${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\left(\mathrm{4}−{sin}^{\mathrm{2}} {x}\right)}{dx}\:<\:\frac{\pi\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$ Commented by necxxx last updated on 01/Oct/19 $${please}\:{help} \\ $$…