Menu Close

Category: Integration

advanced-math-prove-that-k-0-1-16-k-4-8k-1-2-8k-4-1-8k-5-1-8k-6-pi-Bailey-Borwein-formula-

Question Number 138723 by mnjuly1970 last updated on 17/Apr/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……..{advanced}…\:…\:…{math}…… \\ $$$$\:{prove}\:{that}\:_{\ast} ^{\ast} \:\::::: \\ $$$$\:\:\:\boldsymbol{\Omega}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\left(\frac{\mathrm{4}}{\mathrm{8}{k}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{8}{k}+\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{6}}\right)\right\}=\pi \\ $$$$\:\:\:\:\:\:\:\:\:….{Bailey}−{Borwein}\:{formula}…. \\ $$$$\:\:\:…

reposting-a-former-question-x-1-5-1-x-1-dx-t-x-1-10-dx-10-x-9-1-10-dx-10-t-9-t-1-t-4-t-3-t-2-t-1-dt-10-t-6-t-4-t-dt-10-t-t-2-t-1-t-4-t-3-

Question Number 73155 by MJS last updated on 06/Nov/19 $$\mathrm{reposting}\:\mathrm{a}\:\mathrm{former}\:\mathrm{question}… \\ $$$$\int\frac{\sqrt[{\mathrm{5}}]{{x}}−\mathrm{1}}{\:\sqrt{{x}}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{10}}]{{x}}\:\rightarrow\:{dx}=\mathrm{10}\sqrt[{\mathrm{10}}]{{x}^{\mathrm{9}} }{dx}\right] \\ $$$$=\mathrm{10}\int\frac{{t}^{\mathrm{9}} \left({t}−\mathrm{1}\right)}{{t}^{\mathrm{4}} −{t}^{\mathrm{3}} +{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt}= \\ $$$$=\mathrm{10}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} −{t}\right){dt}+\mathrm{10}\int\frac{{t}\left({t}^{\mathrm{2}}…

cos-2x-1-sin-2-x-dx-

Question Number 138691 by liberty last updated on 16/Apr/21 $$\int\:\mathrm{cos}\:\mathrm{2}{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\:=? \\ $$ Answered by mathmax by abdo last updated on 17/Apr/21 $$\mathrm{I}=\int\:\mathrm{cos}\left(\mathrm{2x}\right)\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\Rightarrow\mathrm{I}=\int\:\mathrm{cos}\left(\mathrm{2x}\right)\sqrt{\mathrm{1}+\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}}\mathrm{dx} \\…