Menu Close

Category: Integration

evaluation-of-0-1-xln-1-x-1-x-2-dx-solution-I-B-P-1-2-ln-1-x-2-ln-1-x-0-1-1-2-0-1-ln-1-x-2-1-x-dx-1-2-ln-2-2-1-2-

Question Number 136921 by mnjuly1970 last updated on 27/Mar/21 evaluationof::ϕ=01xln(1+x)1+x2dxsolution:$$\:\:\:\:\boldsymbol{\phi}\overset{{I}.{B}.{P}\:} {=}\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx}=\boldsymbol{\Phi}\right\} \