Menu Close

Category: Integration

Question-134820

Question Number 134820 by 0731619177 last updated on 07/Mar/21 Answered by Ar Brandon last updated on 07/Mar/21 $$\mathcal{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{xyz}}{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{z}\right)\left(\mathrm{z}+\mathrm{y}\right)}\mathrm{dxdydz} \\…

0-pi-2-sin-3x-2-tan-3x-dx-

Question Number 134811 by bramlexs22 last updated on 07/Mar/21 $$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:\frac{\mathrm{sin}\:\left(\frac{\mathrm{3x}}{\mathrm{2}}\right)}{\mathrm{tan}\:\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$ Answered by EDWIN88 last updated on 07/Mar/21 $$\mathrm{set}\:\frac{\mathrm{3x}}{\mathrm{2}}\:=\:\mathrm{t}\:\Rightarrow\:\mathrm{3x}\:=\:\mathrm{2t}\:,\:\begin{array}{|c|c|}{\mathrm{x}=\frac{\pi}{\mathrm{2}}\rightarrow\mathrm{t}=\frac{\mathrm{3}\pi}{\mathrm{4}}}\\{\mathrm{x}=\mathrm{0}\:\rightarrow\mathrm{t}=\mathrm{0}}\\\hline\end{array} \\ $$$$\mathbb{L}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{3}\pi/\mathrm{4}}…

Question-134795

Question Number 134795 by 0731619177 last updated on 07/Mar/21 Answered by EDWIN88 last updated on 07/Mar/21 $$\:\mathrm{noting}\:\mathrm{that}\:\mathrm{the}\:\mathrm{integrand}\:\mathrm{is}\:\mathrm{even}\:\mathrm{function} \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:\left(\pi\mathrm{x}\right)}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{\infty} \frac{\mathrm{sin}\:\left(\pi\mathrm{x}\right)}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}…

Let-consider-K-0-1-1-x-a-1-x-b-1-x-c-x-1-lnx-dx-prove-that-e-K-a-b-a-c-b-c-a-b-c-a-b-c-

Question Number 69241 by ~ À ® @ 237 ~ last updated on 21/Sep/19 $$\:{Let}\:{consider}\:{K}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−{x}^{{a}} \right)\left(\mathrm{1}−{x}^{{b}} \right)\left(\mathrm{1}−{x}^{{c}} \right)}{\left({x}−\mathrm{1}\right){lnx}}{dx}\: \\ $$$${prove}\:{that}\: \\ $$$${e}^{{K}} =\:\frac{\left({a}+{b}\right)!\left({a}+{c}\right)!\left({b}+{c}\right)!}{{a}!{b}!{c}!\left({a}+{b}+{c}\right)!}\:\:…