Menu Close

Category: Integration

let-f-a-0-dx-x-4-2x-2-a-with-a-real-and-a-gt-1-1-determine-a-explicit-form-for-f-a-2-calculate-g-a-0-dx-x-4-2x-2-a-2-3-find-the-values-of-integrals-0-

Question Number 69564 by mathmax by abdo last updated on 25/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+{a}}\:\:\:{with}\:{a}\:{real}\:{and}\:{a}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} }…

Let-f-0-a-f-3-0-and-f-x-e-x-4-what-is-the-value-0-3-x-2-f-x-dx-

Question Number 135062 by liberty last updated on 09/Mar/21 $$\mathrm{Let}\:\mathrm{f}\left(\mathrm{0}\right)\:=\:\mathrm{a}\:;\:\mathrm{f}\left(\mathrm{3}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}^{\mathrm{4}} } \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\int_{\mathrm{0}} ^{\:\mathrm{3}} \mathrm{x}^{\mathrm{2}} \:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$ Answered by john_santu last updated on 10/Mar/21…

3sinx-4cosx-4sinx-3cosx-dx-

Question Number 69502 by 20190927 last updated on 24/Sep/19 $$\int\frac{\mathrm{3sinx}+\mathrm{4cosx}}{\mathrm{4sinx}+\mathrm{3cosx}}\mathrm{dx} \\ $$ Commented by mathmax by abdo last updated on 24/Sep/19 $${let}\:{I}\:=\int\:\:\frac{\mathrm{3}{sinx}\:+\mathrm{4}{cosx}}{\mathrm{4}{sinx}\:+\mathrm{3}{cosx}}{dx}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int\frac{\mathrm{3}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{4}\frac{\mathrm{1}−{t}^{\mathrm{2}}…

Question-134962

Question Number 134962 by 0731619177 last updated on 09/Mar/21 Answered by Olaf last updated on 09/Mar/21 $$\forall{x}\in\mathbb{R}^{\ast} ,\:\mathrm{arctan}{x}+\mathrm{arctan}\frac{\mathrm{1}}{{x}}\:=\:\frac{\pi}{\mathrm{2}} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{x}\mathrm{arctan}{x}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\…

0-2-1-x-3-x-2-2x-1-3-dx-

Question Number 134947 by bobhans last updated on 08/Mar/21 $$\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} \:}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}\:\right)\mathrm{dx}\:?\: \\ $$ Answered by EDWIN88 last updated on 09/Mar/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\:\mathrm{2}}…