Menu Close

Category: Integration

Let-consider-K-0-1-1-x-a-1-x-b-1-x-c-x-1-lnx-dx-prove-that-e-K-a-b-a-c-b-c-a-b-c-a-b-c-

Question Number 69241 by ~ À ® @ 237 ~ last updated on 21/Sep/19 $$\:{Let}\:{consider}\:{K}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−{x}^{{a}} \right)\left(\mathrm{1}−{x}^{{b}} \right)\left(\mathrm{1}−{x}^{{c}} \right)}{\left({x}−\mathrm{1}\right){lnx}}{dx}\: \\ $$$${prove}\:{that}\: \\ $$$${e}^{{K}} =\:\frac{\left({a}+{b}\right)!\left({a}+{c}\right)!\left({b}+{c}\right)!}{{a}!{b}!{c}!\left({a}+{b}+{c}\right)!}\:\:…

Z-0-2-dx-x-1-

Question Number 134764 by bramlexs22 last updated on 07/Mar/21 $$\:\mathbb{Z}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{dx}}{\:\sqrt{\mid\mathrm{x}−\mathrm{1}\mid}}\:? \\ $$ Answered by EDWIN88 last updated on 07/Mar/21 $$\mathbb{Z}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{dx}}{\:\sqrt{\mid\mathrm{x}−\mathrm{1}\mid}}\:;\:\mathrm{let}\:\mathrm{u}=\mid\mathrm{x}−\mathrm{1}\mid \\…

Prove-that-p-0-1-p-4p-1-pi-argcoth-2-4-2-and-p-0-1-p-4p-3-pi-argcoth-2-4-2-

Question Number 69231 by ~ À ® @ 237 ~ last updated on 21/Sep/19 $${Prove}\:{that}\:\:\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{1}}\:=\:\frac{\pi−{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:{and} \\ $$$$\underset{{p}=\mathrm{0}} {\overset{\infty\:} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{4}{p}+\mathrm{3}}\:=\:\frac{\pi+{argcoth}\left(\sqrt{\mathrm{2}}\:\right)}{\mathrm{4}\sqrt{\mathrm{2}}\:}\:\:\: \\ $$…

advanced-calculus-prove-that-1-n-3-sin-2-pin-13-2-pi-3-720-m-n-

Question Number 134750 by mnjuly1970 last updated on 06/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:{prove}\:\:\:{that}::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\Sigma\frac{\mathrm{1}}{{n}^{\mathrm{3}} {sin}\left(\sqrt{\mathrm{2}}\:\pi{n}\right)}\:=\frac{−\mathrm{13}\sqrt{\mathrm{2}}\:\pi^{\mathrm{3}} \:}{\mathrm{720}} \\ $$$$\:\:\:\:\:…{m}.{n}… \\ $$ Terms of Service Privacy Policy…

ln-x-x-1-dx-

Question Number 134716 by metamorfose last updated on 06/Mar/21 $$\int\frac{{ln}\left({x}\right)}{{x}−\mathrm{1}}{dx}=…?? \\ $$ Answered by Lordose last updated on 06/Mar/21 $$\int\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}−\mathrm{1}}\mathrm{dx}\:\overset{\mathrm{u}=\mathrm{x}−\mathrm{1}} {=}\int\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{u}\right)}{\mathrm{u}}\mathrm{du}\:=\:−\mathrm{Li}_{\mathrm{2}} \left(−\mathrm{u}\right)\:+\:\mathrm{C} \\ $$$$\Omega\:=\:−\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)\:+\:\mathrm{C}…