Menu Close

Category: Integration

let-f-0-cos-1-x-2-1-x-2-dx-1-determine-a-explicit-form-of-f-2-calculate-0-cos-2-2x-2-x-2-1-dx-

Question Number 69375 by mathmax by abdo last updated on 22/Sep/19 $${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\…

if-2x-3-2-a-x-f-t-dt-then-f-a-

Question Number 134884 by abdullahquwatan last updated on 08/Mar/21 $$\mathrm{if}\:\mathrm{2x}^{\mathrm{3}} −\mathrm{2}=\int_{{a}} ^{\mathrm{x}} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt},\:\mathrm{then}\:\mathrm{f}\:'\left({a}\right)=… \\ $$ Answered by bemath last updated on 08/Mar/21 $$\:\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\:\mathrm{2x}^{\mathrm{3}} −\mathrm{2}\:\right]=\:\mathrm{f}\left(\mathrm{x}\right) \\…

let-U-n-0-cos-nx-x-2-n-2-2-dx-calculate-lim-n-e-n-2-U-n-

Question Number 134866 by mathmax by abdo last updated on 07/Mar/21 $$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{nx}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{n}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{calculate}\:\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{e}^{\mathrm{n}^{\mathrm{2}} } \mathrm{U}_{\mathrm{n}} \\ $$ Answered by…