Question Number 68879 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\:{determine}\:{a}\:{approximate}\:{value}\:{of}\:{I} \\ $$ Commented by Abdo msup. last updated on 21/Sep/19 $${there}\:{a}\:{error}\:{of}\:{calculus}\:{in}\:{the}\:{answer}\:{i}\:{will}\:{hid}…
Question Number 68874 by mathmax by abdo last updated on 16/Sep/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{1}+{cosx}\:+\mathrm{3}{sinx}} \\ $$ Commented by mathmax by abdo last updated on 24/Sep/19…
Question Number 68877 by mathmax by abdo last updated on 16/Sep/19 $${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{xdx}}{\left({x}^{\mathrm{2}} −{x}+{i}\right)^{\mathrm{2}} }\:\:\:\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$ Commented by mathmax by abdo last…
Question Number 68868 by mathmax by abdo last updated on 16/Sep/19 $${find}\:\int\:\:\:\:\frac{{dx}}{{a}+{cosx}}\:\:{with}\:{a}>\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on 17/Sep/19 $${let}\:{I}\:=\:\int\:\:\frac{{dx}}{{a}+{cosx}}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\…
Question Number 68870 by mathmax by abdo last updated on 16/Sep/19 $${let}\:\:\mid{a}\mid<\mathrm{1}\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{ax}\right){ln}\left(\mathrm{1}−{ax}^{\mathrm{2}} \right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68869 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{a}+{sinx}}\:\:\:\:\:\left({a}\:{real}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{also}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{2}} }\:\:{and}\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{3}} } \\…
Question Number 68788 by mhmd last updated on 15/Sep/19 $$\int\mathrm{1}/\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} \:{dx} \\ $$ Commented by Prithwish sen last updated on 15/Sep/19 $$\mathrm{Using}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\mathrm{I}_{\mathrm{n}}…
Question Number 134301 by bramlexs22 last updated on 02/Mar/21 $$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{4}} }\:{dx} \\ $$ Answered by EDWIN88 last updated on 02/Mar/21 $$\mathrm{replace}\:\mathrm{x}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{yields}\:…
Question Number 134303 by bramlexs22 last updated on 02/Mar/21 $$\mathcal{F}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{16}\:\mathrm{arctan}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$ Answered by Ñï= last updated on 02/Mar/21 $$\mathcal{F}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{16}\:\mathrm{arctan}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 68767 by aliesam last updated on 15/Sep/19 Commented by ~ À ® @ 237 ~ last updated on 15/Sep/19 $${Let}\:{named}\:{it}\:\:{f}_{{n}} \left({x}\right) \\ $$$${Let}\:{named}\:\:\forall\:{a}>\mathrm{0}\:\:{g}\left({a},{x}\right)=\int\:\frac{{dx}}{{a}+{x}^{\mathrm{2}}…