Question Number 134420 by liberty last updated on 03/Mar/21 $$\underset{−\pi/\mathrm{2}} {\int}^{\:\:\:\:\:\:\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2019}^{{x}} +\mathrm{1}}.\:\frac{\mathrm{sin}\:^{\mathrm{2020}} {x}}{\mathrm{sin}\:^{\mathrm{2020}} {x}+\mathrm{cos}\:^{\mathrm{2020}} {x}}\:{dx}\:? \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 68878 by mathmax by abdo last updated on 16/Sep/19 $${find}\:\int\frac{\mathrm{2}\sqrt{{x}}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134418 by mnjuly1970 last updated on 03/Mar/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left({arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)^{\mathrm{2}} =??? \\ $$ Answered by Ñï= last updated on 03/Mar/21 $$\int\left(\mathrm{tan}^{−\mathrm{1}}…
Question Number 68876 by mathmax by abdo last updated on 16/Sep/19 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{x}} }{\left(\mathrm{3}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 68879 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\:{determine}\:{a}\:{approximate}\:{value}\:{of}\:{I} \\ $$ Commented by Abdo msup. last updated on 21/Sep/19 $${there}\:{a}\:{error}\:{of}\:{calculus}\:{in}\:{the}\:{answer}\:{i}\:{will}\:{hid}…
Question Number 68874 by mathmax by abdo last updated on 16/Sep/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{1}+{cosx}\:+\mathrm{3}{sinx}} \\ $$ Commented by mathmax by abdo last updated on 24/Sep/19…
Question Number 68877 by mathmax by abdo last updated on 16/Sep/19 $${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{xdx}}{\left({x}^{\mathrm{2}} −{x}+{i}\right)^{\mathrm{2}} }\:\:\:\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$ Commented by mathmax by abdo last…
Question Number 68868 by mathmax by abdo last updated on 16/Sep/19 $${find}\:\int\:\:\:\:\frac{{dx}}{{a}+{cosx}}\:\:{with}\:{a}>\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on 17/Sep/19 $${let}\:{I}\:=\:\int\:\:\frac{{dx}}{{a}+{cosx}}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\…
Question Number 68870 by mathmax by abdo last updated on 16/Sep/19 $${let}\:\:\mid{a}\mid<\mathrm{1}\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{ax}\right){ln}\left(\mathrm{1}−{ax}^{\mathrm{2}} \right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68869 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{a}+{sinx}}\:\:\:\:\:\left({a}\:{real}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{also}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{2}} }\:\:{and}\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{3}} } \\…