Menu Close

Category: Integration

I-struck-upon-this-n-0-16-n-1-15-0-pi-cos-4-x-sin-x-dx-1-5-cos-5-x-0-pi-0-4-in-another-way-I-cos-4-x-sin-x-dx-I-cos-4-x-cos-x-4cos-3-x-sin-x-cos-x-dx-I

Question Number 134227 by Raxreedoroid last updated on 01/Mar/21 $$\mathrm{I}\:\:\mathrm{struck}\:\mathrm{upon}\:\mathrm{this} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{16}^{{n}} =\frac{−\mathrm{1}}{\mathrm{15}} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \mathrm{cos}^{\mathrm{4}} \:{x}\:\mathrm{sin}\:{x}\:{dx}=\frac{−\mathrm{1}}{\mathrm{5}}\left[\mathrm{cos}^{\mathrm{5}} \:{x}\right]_{\mathrm{0}} ^{\pi} =\mathrm{0}.\mathrm{4} \\ $$$$\mathrm{in}\:\mathrm{another}\:\mathrm{way}…

advanced-calculus-prove-that-i-0-pi-2-cos-tan-x-x-cos-x-dx-pi-e-ii-n-2-e-1-1-n-2-n-2-pi-e-e-

Question Number 134185 by mnjuly1970 last updated on 28/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…..{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:{i}:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({tan}\left({x}\right)−{x}\right)}{{cos}\left({x}\right)}{dx}=\frac{\pi}{{e}} \\ $$$$\:\:\:\:{ii}:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}{e}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{{n}^{\mathrm{2}} } =\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$\:\:…

Question-134182

Question Number 134182 by Algoritm last updated on 28/Feb/21 Answered by Ñï= last updated on 01/Mar/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)^{\mathrm{3}} \frac{\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}}…

1-calculatef-a-0-cos-arctanx-a-x-2-dx-with-a-gt-0-2-calculste-g-a-0-cos-arctanx-a-x-2-2-3-find-the-value-if-integrals-0-cos-arctanx-2-x-2-and-0-

Question Number 68600 by Abdo msup. last updated on 14/Sep/19 $$\left.\mathrm{1}\right){calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{{a}+{x}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)?{calculste}\:\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({arctanx}\right)}{\left({a}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{if}\:{integrals} \\ $$$$\int_{\mathrm{0}} ^{\infty}…