Menu Close

Category: Integration

advanced-integral-prove-that-0-1-e-x-1-e-x-dx-x-Golden-ratio-

Question Number 133791 by mnjuly1970 last updated on 24/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:\:{integral}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}−{e}^{−\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }\:\right)\frac{{dx}}{{x}}\:=?? \\ $$$$\:\:\:\varphi:\:=\:{Golden}\:{ratio}… \\ $$$$ \\ $$ Answered…

A-0-1-sin-1-x-2-1-2x-4-2-dx-

Question Number 133786 by bobhans last updated on 24/Feb/21 $$\mathcal{A}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{2}}}\:\right)\:{dx}\:=? \\ $$ Answered by john_santu last updated on 24/Feb/21 $${Using}\:{the}\:{Pythagorean}\:{theorem}\:…

calculate-w-x-2-2y-2-x-2-3y-2-dxdy-with-w-x-y-R-2-0-x-1-and-1-y-2-

Question Number 68241 by mathmax by abdo last updated on 07/Sep/19 $${calculate}\:\int\int_{{w}} \:\:\:\left({x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{dxdy} \\ $$$${with}\:{w}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$ Commented by mathmax…

Let-consider-a-n-n-and-u-n-n-two-reals-sequence-defined-such-as-a-0-1-n-gt-1-a-n-1-p-0-n-a-p-a-n-p-and-p-0-n-a-p-u-n-p-0-Part1-1-Express-n-gt-1-a-n-i

Question Number 68220 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…

Let-consider-a-n-n-and-u-n-n-two-reals-sequence-defined-such-as-a-0-1-n-gt-1-a-n-1-p-0-n-a-p-a-n-p-and-p-0-n-a-p-u-n-p-0-Part1-1-Express-n-gt-1-a-n-i

Question Number 68219 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…