Question Number 68271 by ~ À ® @ 237 ~ last updated on 08/Sep/19 $$\:\:{Find}\:\:{J}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{W}\left(−{ulnu}\right)}{{ulnu}}\:{du}\:\:\:\:{when}\:\:{W}\:{is}\:{the}\:{lambert}\:{function} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 133791 by mnjuly1970 last updated on 24/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:\:{integral}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}−{e}^{−\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }\:\right)\frac{{dx}}{{x}}\:=?? \\ $$$$\:\:\:\varphi:\:=\:{Golden}\:{ratio}… \\ $$$$ \\ $$ Answered…
Question Number 133786 by bobhans last updated on 24/Feb/21 $$\mathcal{A}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{2}}}\:\right)\:{dx}\:=? \\ $$ Answered by john_santu last updated on 24/Feb/21 $${Using}\:{the}\:{Pythagorean}\:{theorem}\:…
Question Number 68241 by mathmax by abdo last updated on 07/Sep/19 $${calculate}\:\int\int_{{w}} \:\:\:\left({x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{dxdy} \\ $$$${with}\:{w}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$ Commented by mathmax…
Question Number 68220 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…
Question Number 68219 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…
Question Number 133725 by Ar Brandon last updated on 23/Feb/21 Commented by Ar Brandon last updated on 23/Feb/21 01:15 AM in India, and 24th February…
Question Number 2645 by Filup last updated on 24/Nov/15 $${A}=\int_{{N}_{\mathrm{1}} } ^{{N}_{\mathrm{2}} } \lfloor{x}\rfloor{dx} \\ $$$$\left({N}_{\mathrm{1}} ,\:{N}_{\mathrm{2}} \right)\in\mathbb{Z},\:\:\:{N}_{\mathrm{1}} <{N}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:{A} \\ $$…
Question Number 133719 by leena12345 last updated on 23/Feb/21 Commented by leena12345 last updated on 23/Feb/21 $${help} \\ $$ Answered by bramlexs22 last updated on…
Question Number 2629 by Filup last updated on 24/Nov/15 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{evalate}: \\ $$$${A}=\int_{{a}} ^{\:{b}} \lfloor{f}\left({x}\right)\rfloor{dx} \\ $$$$ \\ $$$${for}\:{example}: \\ $$$$\int_{\mathrm{0}.\mathrm{5}} ^{\:\mathrm{2}.\mathrm{5}} \lfloor{x}^{\mathrm{2}} \rfloor{dx} \\ $$…