Menu Close

Category: Integration

mathematical-analysis-evaluate-0-e-2pix-e-pix-x-1-e-2pix-1-e-pix-dx-0-1-ln-x-dx-

Question Number 137419 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:………{mathematical}\:\:\:\:….\:\:\:{analysis}…….. \\ $$$$\:\:\:\:\:\:\:{evaluate}…. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\lambda\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda\:=\:??? \\…

x-3-1-x-dx-

Question Number 6343 by sanusihammed last updated on 24/Jun/16 $$\int{x}^{\mathrm{3}} \:\sqrt{\mathrm{1}\:−\:{x}}\:\:{dx} \\ $$ Answered by nburiburu last updated on 24/Jun/16 $${by}\:{substitution}\:{t}=\sqrt{\mathrm{1}−{x}}\Rightarrow{x}=\mathrm{1}−{t}^{\mathrm{2}} \\ $$$${dx}=−\mathrm{2}{t}\:{dt} \\ $$$${I}=\int\left(\mathrm{1}−{t}^{\mathrm{2}}…

Advanced-Calculus-simplify-n-k-1-2n-1-log-1-tan-kpi-4-2n-1-moreover-find-the-value-of-lim-n-n-n-

Question Number 137397 by mnjuly1970 last updated on 02/Apr/21 $$\:…….\mathscr{A}{dvanced}\:…\:\:…\:\:…\:\mathscr{C}{alculus}……. \\ $$$$\:{simplify}\:::: \\ $$$$\:\Omega_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$\:{moreover}\:,\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\Omega=\:{lim}_{{n}\rightarrow\infty} \frac{\Omega_{{n}} }{{n}}\:=??? \\ $$…

Question-137359

Question Number 137359 by rexford last updated on 01/Apr/21 Answered by Ar Brandon last updated on 01/Apr/21 $$\mathcal{I}=\int_{\sqrt[{\mathrm{3}}]{\mathrm{log3}}} ^{\sqrt[{\mathrm{3}}]{\mathrm{log4}}} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{sinx}^{\mathrm{3}} }{\mathrm{sinx}^{\mathrm{3}} +\mathrm{sin}\left(\mathrm{log12}−\mathrm{x}^{\mathrm{3}} \right)}\mathrm{dx} \\…

suppose-that-f-is-continuous-and-differentiable-in-a-b-if-f-x-0-x-a-b-then-show-that-f-is-constant-on-a-b-

Question Number 71816 by psyche last updated on 20/Oct/19 $${suppose}\:{that}\:{f}\:{is}\:{continuous}\:{and}\:{differentiable}\:{in}\:\left({a},{b}\right)\:{if}\:{f}'\left({x}\right)\:=\mathrm{0}\:,\forall\:{x}\in\left({a},{b}\right)\:{then}\:{show}\:{that}\:{f}\:{is}\:{constant}\:{on}\:\left[{a},{b}\right]. \\ $$ Answered by mind is power last updated on 20/Oct/19 $$\mathrm{assum}\:\mathrm{f}\:\mathrm{is}\:\mathrm{not}\:\mathrm{consrante} \\ $$$$\exists\mathrm{x},\mathrm{y}\:\mathrm{suche}\:\mathrm{that}\:\mathrm{1}\geqslant\mathrm{y}\neq\mathrm{x}\geqslant\mathrm{0}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\neq\mathrm{f}\left(\mathrm{y}\right) \\…

1-calculate-F-a-0-pi-4-arctan-1-a-cosx-dx-2-find-the-valeur-of-0-pi-4-arctan-1-2-cosx-dx-

Question Number 71813 by mathmax by abdo last updated on 20/Oct/19 $$\left.\mathrm{1}\right){calculate}\:{F}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {arctan}\left(\mathrm{1}+{a}\:{cosx}\right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valeur}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{arctan}\left(\mathrm{1}+\sqrt{\mathrm{2}}{cosx}\right){dx} \\ $$ Terms of Service Privacy Policy…