Menu Close

Category: Integration

Find-the-volume-of-the-region-that-is-bounded-by-the-curves-y-x-3-y-8-x-0-rotated-about-x-9-

Question Number 133533 by Raxreedoroid last updated on 22/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{that}\:\mathrm{is}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curves} \\ $$$${y}={x}^{\mathrm{3}} ,{y}=\mathrm{8},{x}=\mathrm{0},\:\mathrm{rotated}\:\mathrm{about}\:{x}=\mathrm{9} \\ $$ Answered by bemath last updated on 23/Feb/21 $$\mathrm{V}=\pi\underset{\mathrm{0}} {\overset{\mathrm{8}} {\int}}\left(\mathrm{9}−\sqrt[{\mathrm{3}}]{\mathrm{y}}\:\right)^{\mathrm{2}}…

Prove-that-for-m-0-1-2-3-lim-x-m-x-

Question Number 2434 by Yozzi last updated on 20/Nov/15 $${Prove}\:{that}\:{for}\:{m}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow−{m}} {\mathrm{lim}}\Gamma\left({x}\right)=\infty. \\ $$ Answered by 123456 last updated on 25/Nov/15 $$\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right) \\ $$$$\mathrm{so}…

Question-67963

Question Number 67963 by mhmd last updated on 02/Sep/19 Commented by mathmax by abdo last updated on 02/Sep/19 $${generally}\:{if}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} {f}\left({t}\right){dt}\:\Rightarrow{F}^{'} \left({x}\right)={v}^{'} \left({x}\right){f}\left({v}\left({x}\right)\right)−{u}^{'} \left({x}\right){f}\left({u}\left({x}\right)\right) \\…

advnced-calculus-prove-0-sin-tan-x-x-dx-pi-2-1-1-e-prove-that-0-1-e-x-2-x-2-dx-pi-

Question Number 133490 by mnjuly1970 last updated on 22/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:{advnced}\:\:{calculus}…. \\ $$$$\:\:\:\:{prove}:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:{prove}\:{that}:\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx}=\sqrt{\pi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:…

e-y-2-2-dy-

Question Number 67942 by mhmd last updated on 02/Sep/19 $$\int{e}^{{y}^{\mathrm{2}} /\mathrm{2}} \:\:{dy} \\ $$ Commented by mr W last updated on 09/Feb/21 $$\int{e}^{\frac{{y}^{\mathrm{2}} }{\mathrm{2}}} {dy}=\sqrt{\frac{\pi}{\mathrm{2}}}\:{erfi}\left(\frac{{y}}{\:\sqrt{\mathrm{2}}}\right)+{C}…