Question Number 2340 by Yozzi last updated on 18/Nov/15 $${Prove}\:{that},\:\forall{m}\in\mathbb{Z}^{+} , \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{m}} {\prod}}\Gamma\left({x}+\frac{{r}−\mathrm{1}}{{m}}\right)={m}^{\frac{\mathrm{1}}{\mathrm{2}}−{mx}} \left(\mathrm{2}\pi\right)^{\frac{{m}−\mathrm{1}}{\mathrm{2}}} \Gamma\left({mx}\right). \\ $$$$\left\{\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt},\:{x}>\mathrm{0}\right\} \\ $$…
Question Number 67851 by mathmax by abdo last updated on 01/Sep/19 $${find}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\:{with}\:{z}\:{from}\:{C}\:. \\ $$ Commented by MJS last updated on 01/Sep/19 $$\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{problem}/\mathrm{mistake}\:\mathrm{if}\:\mathrm{we}\:\mathrm{just} \\ $$$$\mathrm{calculate}\:\mathrm{it}\:\mathrm{as}\:\mathrm{if}\:{z}\in\mathbb{R}?…
Question Number 67850 by mathmax by abdo last updated on 01/Sep/19 $${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{z}}\:\:{with}\:{z}\:{from}\:{C} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 133369 by mnjuly1970 last updated on 21/Feb/21 $$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{calculus}\:\left(\mathrm{2}\right)….. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{1}} ^{\:\mathrm{2}} \left(\frac{{ln}\left(\frac{{x}+\mathrm{2}}{{x}+\mathrm{1}}\right)}{{x}}\right){dx}\:=??? \\ $$$$ \\ $$ Commented by Dwaipayan Shikari last…
Question Number 67835 by mind is power last updated on 01/Sep/19 $$\int_{\mathrm{0}} ^{\mathrm{2}} {x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$ Answered by MJS last updated on 01/Sep/19…
Question Number 133360 by liberty last updated on 21/Feb/21 $$\int\:\sqrt{\mathrm{1}+\mathrm{sec}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$ Commented by som(math1967) last updated on 21/Feb/21 $$\int\sqrt{\frac{\mathrm{1}+{cosx}}{{cosx}}}{dx} \\ $$$$\sqrt{\mathrm{2}}\int\frac{{cos}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}{dx} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}}\int\frac{{cos}\frac{{x}}{\mathrm{2}}}{\:\sqrt{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}}…
Question Number 67823 by mhmd last updated on 31/Aug/19 $$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{lnx}+{e}^{{lnx}/{x}} } {dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 2284 by Yozzi last updated on 13/Nov/15 $${Define}\:{a}\:{curve}\:{E}\:{by}\:{the}\:{parametric} \\ $$$${equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\left({t}\right)=\int_{{g}_{\mathrm{1}} \left({t}\right)} ^{{h}_{\mathrm{1}} \left({t}\right)} {f}_{\mathrm{1}} \left({u}\right){du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\left({t}\right)=\int_{{g}_{\mathrm{2}} \left({t}\right)} ^{{h}_{\mathrm{2}} \left({t}\right)} {f}_{\mathrm{2}}…
Question Number 67799 by mathmax by abdo last updated on 31/Aug/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:−{e}^{{ia}} \right)\left({x}^{\mathrm{2}} −{e}^{{ib}} \right)}\:\:{with}\:{a}>\mathrm{0}\:{andb}>\mathrm{0} \\ $$ Commented by MJS last updated…
Question Number 2241 by Yozzi last updated on 10/Nov/15 $${Evaluate} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{9}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\frac{{sin}\theta{cos}\theta}{{cos}^{\mathrm{3}} \theta+{sin}^{\mathrm{3}} \theta}\right)^{\mathrm{2}} {d}\theta. \\ $$ Answered by Filup last updated on…