Menu Close

Category: Integration

0-1-2-1-1-x-2-dx-

Question Number 133173 by john_santu last updated on 19/Feb/21 $$\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \:\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 19/Feb/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}}…

Show-that-n-Z-0-pi-4-tan-2n-1-d-1-n-1-2-ln2-m-1-n-1-m-2m-Deduce-that-1-1-m-1-2m-0-5ln2-Show-also-that-1-1-m-1-2m-1-pi-4-

Question Number 2088 by Yozzi last updated on 01/Nov/15 $${Show}\:{that}\:\forall{n}\in\mathbb{Z}^{+} \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {tan}^{\mathrm{2}{n}+\mathrm{1}} \theta{d}\theta=\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{\mathrm{2}{m}}\right). \\ $$$${Deduce}\:{that}\:\underset{\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−\mathrm{1}} }{\mathrm{2}{m}}=\mathrm{0}.\mathrm{5}{ln}\mathrm{2}. \\…

If-x-0-0-5pi-show-that-sinx-x-1-6-x-3-Hence-prove-that-1-3000-0-1-10-x-2-1-x-sinx-2-dx-2-5999-

Question Number 2089 by Yozzi last updated on 01/Nov/15 $${If}\:{x}\in\left[\mathrm{0},\mathrm{0}.\mathrm{5}\pi\right],\:{show}\:{that}\:{sinx}\geqslant{x}−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} . \\ $$$${Hence}\:{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{3000}}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{10}} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}+{sinx}\right)^{\mathrm{2}} }{dx}\leqslant\frac{\mathrm{2}}{\mathrm{5999}}. \\ $$ Commented by prakash jain…

Question-67617

Question Number 67617 by aliesam last updated on 29/Aug/19 Commented by kaivan.ahmadi last updated on 29/Aug/19 $$\int\frac{\sqrt[{\mathrm{4}}]{{x}^{\mathrm{2}} −\mathrm{2}\sqrt[{\mathrm{4}}]{{x}^{\mathrm{6}} }+{x}}}{\:\sqrt[{\mathrm{4}}]{{x}^{\mathrm{3}} }}{dx}=\int\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{x}}}−\mathrm{2}\sqrt[{\mathrm{4}}]{{x}^{\mathrm{3}} }+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{x}^{\mathrm{2}} }}\right){dx}= \\ $$$$\int\left({x}^{\frac{−\mathrm{1}}{\mathrm{4}}} −\mathrm{2}{x}^{\frac{\mathrm{3}}{\mathrm{4}}}…