Menu Close

Category: Integration

dx-x-4-1-x-4-2-1-4-

Question Number 133109 by EDWIN88 last updated on 18/Feb/21 $$\int\:\frac{{dx}}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)\:\sqrt[{\mathrm{4}}]{{x}^{\mathrm{4}} +\mathrm{2}}}\:? \\ $$ Commented by liberty last updated on 20/Feb/21 $$\mathrm{I}\:=\:\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)\:\sqrt[{\mathrm{4}}]{\mathrm{x}^{\mathrm{4}} +\mathrm{2}}} \\…

let-f-a-dx-x-2-1-a-e-ix-with-a-gt-0-1-find-a-explicit-form-of-f-a-2-determine-also-g-a-dx-x-2-1-a-e-ix-2-3-let-I-Re-dx-

Question Number 67542 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({a}\:+{e}^{{ix}} \right)}\:\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({a}\right)=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({a}+{e}^{{ix}} \right)^{\mathrm{2}} }…

Suppose-0-lt-b-a-Show-that-the-area-of-intersection-E-F-of-the-two-regions-defined-by-E-x-y-x-2-a-2-y-2-b-2-1-and-F-x-y-x-2-b-2-y-2-a-2-1-is-4absin-1-b-a-2-b-2-

Question Number 2004 by Yozzi last updated on 29/Oct/15 $${Suppose}\:\mathrm{0}<{b}\leqslant{a}.\:{Show}\:{that}\:{the}\:{area}\:{of} \\ $$$${intersection}\:{E}\cap{F}\:{of}\:{the}\:{two}\:{regions} \\ $$$${defined}\:{by}\: \\ $$$${E}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\leqslant\mathrm{1}\right\}\:{and} \\ $$$${F}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}}…