Menu Close

Category: Integration

0-1-x-3-dx-x-1-3-3x-5-

Question Number 133222 by john_santu last updated on 20/Feb/21 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{dx}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{3x}−\mathrm{5}} \\ $$ Answered by liberty last updated on 20/Feb/21 $$\:\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}}…

let-f-a-0-dx-x-2-1-x-2-a-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-calculate-g-a-0-dx-x-2-1-x-2-a-2-3-give-f-n-a-at-form-of-integral-4-calcul

Question Number 67674 by Abdo msup. last updated on 30/Aug/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{a}\right)}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} } \\…

0-1-2-1-1-x-2-dx-

Question Number 133173 by john_santu last updated on 19/Feb/21 $$\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \:\sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 19/Feb/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}}…

Show-that-n-Z-0-pi-4-tan-2n-1-d-1-n-1-2-ln2-m-1-n-1-m-2m-Deduce-that-1-1-m-1-2m-0-5ln2-Show-also-that-1-1-m-1-2m-1-pi-4-

Question Number 2088 by Yozzi last updated on 01/Nov/15 $${Show}\:{that}\:\forall{n}\in\mathbb{Z}^{+} \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {tan}^{\mathrm{2}{n}+\mathrm{1}} \theta{d}\theta=\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{\mathrm{2}{m}}\right). \\ $$$${Deduce}\:{that}\:\underset{\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−\mathrm{1}} }{\mathrm{2}{m}}=\mathrm{0}.\mathrm{5}{ln}\mathrm{2}. \\…