Question Number 67527 by mathmax by abdo last updated on 28/Aug/19 $${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$$ \\ $$ Commented by ~ À ®…
Question Number 67526 by mathmax by abdo last updated on 28/Aug/19 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dx}}{\mathrm{3}+\mathrm{2}{sinx}\:+{cosx}} \\ $$ Commented by mathmax by abdo last updated on 31/Aug/19…
Question Number 67525 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{a}>{b}>\mathrm{0}\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{\left({a}+{bsinx}\right)^{\mathrm{2}} } \\ $$ Commented by ~ À ® @ 237 ~…
Question Number 67517 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{z}\:\in{C}\:{and}\:\mid{z}\mid<\mathrm{1}\:\:{prove}\:{that} \\ $$$$\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\:+\frac{{z}^{\mathrm{2}} }{\mathrm{1}−{z}^{\mathrm{4}} }\:+…..+\frac{{z}^{\mathrm{2}^{{n}} } }{\mathrm{1}−{z}^{\mathrm{2}^{{n}+\mathrm{1}} } }+…=\frac{{z}}{\mathrm{1}−{z}} \\ $$$$\frac{{z}}{\mathrm{1}+{z}}\:+\frac{\mathrm{2}{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{2}} }\:+….+\frac{\mathrm{2}^{{n}}…
Question Number 133051 by mnjuly1970 last updated on 18/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:{evaluate}:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{\mathrm{2}} \:\mathrm{2}^{{n}+\mathrm{1}} }=?? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 133048 by mnjuly1970 last updated on 18/Feb/21 $$\:\:\:\:\:\:\:{nice}\:…..{calculus}… \\ $$$$\:\:\:{evaluate}\:::\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{H}_{{n}} }{{n}^{\mathrm{2}} +{n}}\right)=? \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 67513 by mhmd last updated on 28/Aug/19 $$\int{x}^{{n}\:} {lnx}/{n}^{{x}} \:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133050 by mnjuly1970 last updated on 18/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:…{nice}\:……{calculus}… \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {xli}_{\mathrm{3}} \left({x}\right){dx}=??? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 133036 by liberty last updated on 18/Feb/21 $$\underset{\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2014}} \left({x}\right)}\:=\:\frac{\pi\mathrm{e}^{\mathrm{q}} }{\mathrm{p}} \\ $$$$\mathrm{Find}\:\mathrm{2p}−\mathrm{q}.\: \\ $$ Answered by liberty last updated on 18/Feb/21…
Question Number 133038 by liberty last updated on 18/Feb/21 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:=? \\ $$ Commented by Dwaipayan Shikari last updated on 18/Feb/21…