Question Number 132798 by metamorfose last updated on 16/Feb/21 $$\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \left(\sqrt{\mathrm{sin}\:\left({x}\right)}+\sqrt{\mathrm{cos}\:\left({x}\right)}\right){dx} \\ $$ Answered by Ñï= last updated on 17/Feb/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{{sinx}}+\sqrt{{cosx}}\right){dx} \\…
Question Number 67246 by Learner-123 last updated on 24/Aug/19 $${Integrate}: \\ $$$$\left.\mathrm{1}\right)\:\underset{\mathrm{3}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{1}/{x}\:{dx}}{{ln}\left({x}\right)\sqrt{{ln}^{\mathrm{2}} {x}−\mathrm{1}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{e}^{{x}} {dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\:\frac{\mathrm{2}^{{x}}…
Question Number 67235 by prof Abdo imad last updated on 24/Aug/19 $${find}\:\:\int_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{3}}} \:{x}^{\mathrm{2}} \left\{{cosx}−{sinx}\right\}^{\mathrm{3}} {dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 67233 by prof Abdo imad last updated on 24/Aug/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{xdx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }} \\ $$ Commented by mind is power last updated on…
Question Number 67231 by mhmd last updated on 24/Aug/19 $$\left.{find}\:\int{x}/{x}^{\mathrm{5}} −\mathrm{1}\right)\:{dx} \\ $$ Answered by mind is power last updated on 24/Aug/19 $$\left({x}\right){what}\:{do}\:{hou}\:{mean}? \\ $$…
Question Number 132765 by Ahmed1hamouda last updated on 16/Feb/21 Answered by mr W last updated on 16/Feb/21 Commented by mr W last updated on 16/Feb/21…
Question Number 132755 by liberty last updated on 16/Feb/21 Commented by KINTU last updated on 16/Feb/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sinx}}{\mathrm{sinx}+\mathrm{cosx}}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{8}}\left(\pi−\mathrm{ln4}\right) \\ $$ Answered by EDWIN88 last…
Question Number 1673 by 123456 last updated on 31/Aug/15 $$\omega\in\mathbb{R},\omega>\mathrm{0} \\ $$$$\mathrm{0}<\alpha<\beta \\ $$$${f}_{{m}} \left(\alpha,\beta\right)=\frac{\omega}{\beta−\alpha}\underset{\alpha/\omega} {\overset{\beta/\omega} {\int}}\mathrm{sin}\:\left(\omega{t}\right){dt} \\ $$$${f}_{{r}} \left(\alpha,\beta\right)=\sqrt{\frac{\omega}{\beta−\alpha}\underset{\alpha/\omega} {\overset{\beta/\omega} {\int}}\mathrm{sin}^{\mathrm{2}} \left(\omega{t}\right){dt}} \\ $$$${f}_{{m}}…
Question Number 132733 by bagjagunawan last updated on 16/Feb/21 $$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }\:{dx}=…? \\ $$ Answered by Ajetunmobi last updated on 16/Feb/21 Terms of…
Question Number 132729 by mnjuly1970 last updated on 16/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:\:{evaluate}\:: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−\mathrm{2}{x}} {ln}\left({x}\right){dx}=??? \\ $$$$ \\ $$ Answered by Olaf last…