Menu Close

Category: Integration

Calculate-I-a-b-0-1-t-a-1-t-b-dt-given-that-I-a-b-b-a-1-I-a-1-b-1-a-gt-0-b-gt-0-Use-the-fact-that-I-a-b-I-a-1-b-I-a-b-1-and-I-a-b-I-b-a-to-help-evaluate-I-a-b-

Question Number 1643 by 112358 last updated on 28/Aug/15 $${Calculate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}} \left(\mathrm{1}−{t}\right)^{{b}} {dt} \\ $$$${given}\:{that}\:{I}\left({a},{b}\right)=\frac{{b}}{{a}+\mathrm{1}}{I}\left({a}+\mathrm{1},{b}−\mathrm{1}\right) \\ $$$$\left({a}>\mathrm{0},{b}>\mathrm{0}\right).\:{Use}\:{the}\:{fact}\:{that} \\ $$$${I}\left({a},{b}\right)={I}\left({a}+\mathrm{1},{b}\right)+{I}\left({a},{b}+\mathrm{1}\right) \\ $$$${and}\:{I}\left({a},{b}\right)={I}\left({b},{a}\right)\: \\…

I-dx-x-x-2-1-3-

Question Number 132693 by liberty last updated on 15/Feb/21 $$\mathrm{I}=\int\:\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\: \\ $$ Answered by EDWIN88 last updated on 15/Feb/21 $$\mathrm{Ostrogradsky}\:\mathrm{again} \\ $$$$\int\:\frac{{dx}}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}}…

Show-that-d-dy-g-1-y-g-2-y-f-x-y-dx-g-1-y-g-2-y-f-y-x-y-dx-g-2-y-f-g-2-y-y-g-1-y-f-g-1-y-y-using-Leibniz-s-rule-and-the-chain-rule-where-g-1-and-g-2-are-dif

Question Number 1602 by 112358 last updated on 25/Aug/15 $${Show}\:{that}\: \\ $$$$\frac{{d}}{{dy}}\int_{{g}_{\mathrm{1}} \left({y}\right)} ^{{g}_{\mathrm{2}} \left({y}\right)} {f}\left({x},{y}\right){dx}=\int_{{g}_{\mathrm{1}} \left({y}\right)} ^{{g}_{\mathrm{2}} \left({y}\right)} \frac{\partial{f}}{\partial{y}}\left({x},{y}\right){dx}+{g}_{\mathrm{2}} ^{'} \left({y}\right){f}\left({g}_{\mathrm{2}} \left({y}\right),{y}\right)−{g}_{\mathrm{1}} ^{'} \left({y}\right){f}\left({g}_{\mathrm{1}}…

Let-and-denote-functions-of-x-where-is-odd-and-is-even-x-R-Is-it-generally-true-that-integrating-an-odd-function-gives-an-even-function-and-vice-versa-1-x-dx-1-x-C-and-2-x-d

Question Number 1582 by 112358 last updated on 21/Aug/15 $${Let}\:\phi\:{and}\:\varepsilon\:{denote}\:{functions}\:{of}\:{x} \\ $$$${where}\:\phi\:{is}\:{odd}\:{and}\:\varepsilon\:{is}\:{even}\:\forall{x}\in\mathbb{R}. \\ $$$${Is}\:{it}\:{generally}\:{true}\:{that}\:{integrating} \\ $$$${an}\:{odd}\:{function}\:{gives}\:{an}\:{even} \\ $$$${function}\:{and}\:{vice}\:{versa}?\: \\ $$$$\int\phi_{\mathrm{1}} \left({x}\right)\:{dx}=\varepsilon_{\mathrm{1}} \left({x}\right)+{C}\:? \\ $$$${and}\:\int\phi_{\mathrm{2}} \left({x}\right){dx}=\varepsilon_{\mathrm{2}}…