Menu Close

Category: Integration

x-cosh-x-sinh-x-2-dx-

Question Number 132473 by physicstutes last updated on 14/Feb/21 $$\int\:\frac{{x}\:\mathrm{cosh}\:{x}}{\left(\mathrm{sinh}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$ Answered by mathmax by abdo last updated on 14/Feb/21 $$\mathrm{I}=\int\:\frac{\mathrm{xchx}}{\mathrm{sh}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\:\mathrm{u}^{'} \:=\frac{\mathrm{chx}}{\mathrm{sh}^{\mathrm{2}}…

Question-66938

Question Number 66938 by Cmr 237 last updated on 20/Aug/19 Commented by mathmax by abdo last updated on 21/Aug/19 $$\left.\mathrm{8}\right){by}\:{parts}\:\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:={xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\int\:{x}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={xln}\left(\mathrm{1}+{x}^{\mathrm{2}}…

Question-132469

Question Number 132469 by Algoritm last updated on 14/Feb/21 Answered by Olaf last updated on 15/Feb/21 $$\mathrm{Let}\:\Omega_{{i}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}_{{i}} \left(\mathrm{1}−\mathrm{ln}{x}_{{i}} \right)}{dx}_{{i}} \\ $$$$\mathrm{Let}\:{u}_{{i}} \:=\:\mathrm{1}−\mathrm{ln}{x}_{{i}}…

Given-a-b-x-2-3x-x-3-dx-11-2-where-a-lt-3-lt-b-a-2b-8-Find-a-b-x-dx-

Question Number 132463 by EDWIN88 last updated on 14/Feb/21 $$\:\mathrm{Given}\:\int_{{a}} ^{\:{b}} \:\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}}{\mid{x}−\mathrm{3}\mid}\:\mathrm{dx}\:=\:\frac{\mathrm{11}}{\mathrm{2}}\:\mathrm{where}\:\begin{cases}{{a}<\mathrm{3}<{b}}\\{{a}+\mathrm{2}{b}=\mathrm{8}}\end{cases} \\ $$$$\:\mathrm{Find}\:\int_{{a}} ^{{b}} \:\mid{x}\mid\:\mathrm{dx}.\: \\ $$ Answered by bemath last updated on…

Evaluate-the-following-integral-I-pi-4-pi-2-cos2x-sin2x-ln-cosx-sinx-dx-

Question Number 1350 by 112358 last updated on 24/Jul/15 $${Evaluate}\:{the}\:{following}\:{integral}: \\ $$$${I}=\int_{\pi/\mathrm{4}} ^{\:\pi/\mathrm{2}} \left({cos}\mathrm{2}{x}+{sin}\mathrm{2}{x}\right){ln}\left({cosx}+{sinx}\right)\:{dx} \\ $$ Commented by prakash jain last updated on 25/Jul/15 $$\int\mathrm{sin}\:\mathrm{2}{x}\mathrm{ln}\:\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right){dx}…

let-x-gt-0-and-f-x-1-2-t-1-t-2-2xt-1-dt-1-find-a-explicit-form-of-f-x-2-determine-also-g-x-1-2-t-2-t-t-2-2xt-1-dt-3-find-the-value-of-integrals-1-2-t-1-t-2-t-1-dt

Question Number 66816 by mathmax by abdo last updated on 20/Aug/19 $${let}\:{x}>\mathrm{0}\:{and}\:{f}\left({x}\right)=\int_{\mathrm{1}} ^{\mathrm{2}} \left({t}+\mathrm{1}\right)\sqrt{{t}^{\mathrm{2}} −\mathrm{2}{xt}−\mathrm{1}}{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}^{\mathrm{2}} \:+{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{2}{xt}−\mathrm{1}}}{dt} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{integrals}\:\:\int_{\mathrm{1}}…