Question Number 67035 by rajesh4661kumar@gmail.com last updated on 22/Aug/19 Commented by rajesh4661kumar@gmail.com last updated on 22/Aug/19 $${solve}\:{please}\:{argent}\:{hai} \\ $$ Commented by mathmax by abdo last…
Question Number 67022 by mathmax by abdo last updated on 21/Aug/19 $${find}\:\int\:\left(\mathrm{1}+\sqrt{{x}}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67020 by mathmax by abdo last updated on 21/Aug/19 $${find}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left(\mathrm{1}+{xt}\right){dt}\:\:{with}\:{x}\:{real} \\ $$ Commented by mathmax by abdo last updated on 22/Aug/19…
Question Number 67018 by mathmax by abdo last updated on 21/Aug/19 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 67021 by mathmax by abdo last updated on 21/Aug/19 $${find}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\:+{e}^{−{t}} \right){dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 67019 by mathmax by abdo last updated on 21/Aug/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } {arctan}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 67017 by mathmax by abdo last updated on 21/Aug/19 $${find}\:\int\:\:{arctan}\left(\mathrm{1}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 24/Aug/19 $${let}\:{I}\:=\int\:{arctan}\left(\mathrm{1}+\sqrt{{x}+\mathrm{1}}\right){dx}\:\:{changement}\:\sqrt{{x}+\mathrm{1}}={t}\:{give}\:{x}+\mathrm{1}={t}^{\mathrm{2}} \:\Rightarrow…
Question Number 67016 by mathmax by abdo last updated on 21/Aug/19 $${find}\:\int\:{arctan}\left(\mathrm{1}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67012 by mathmax by abdo last updated on 21/Aug/19 $${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\left[{x}\right]\right)}{{x}^{\mathrm{3}} }{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 67008 by mathmax by abdo last updated on 21/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{3}}…