Menu Close

Category: Integration

0-pi-2-dx-1-sin-x-diverges-or-converges-

Question Number 132534 by liberty last updated on 15/Feb/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}\:\:\rightarrow\mathrm{diverges}\:\mathrm{or}\:\mathrm{converges}? \\ $$ Commented by MJS_new last updated on 15/Feb/21 $$\mathrm{we}\:\mathrm{only}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{if}\:\mathrm{it}\:\mathrm{converges}\:\mathrm{or}\:\mathrm{not} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\leqslant\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:{x}}\leqslant\mathrm{1}\:\Rightarrow\:\mathrm{converges} \\…

nice-calculus-prove-that-n-1-1-n-ln-n-n-ln-2-1-2-ln-2-2-

Question Number 132519 by mnjuly1970 last updated on 14/Feb/21 $$\:\:\:\:\:….\:\:{nice}\:\:{calculus}…. \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {ln}\left({n}\right)}{{n}}=\gamma{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$ \\ $$ Answered by mindispower…

Evaluate-the-following-integral-0-n-x-1-x-dx-n-N-Here-x-is-the-integer-part-of-x-e-g-0-12-0-5-896-5-

Question Number 1444 by 112358 last updated on 04/Aug/15 $${Evaluate}\:{the}\:{following}\:{integral}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{n}} \lfloor{x}\rfloor^{\mathrm{1}/\lfloor{x}\rfloor!} {dx}\:\:\:\:\:\:\:\left({n}\in\mathbb{N}\right) \\ $$$${Here}\:\lfloor{x}\rfloor\:{is}\:{the}\:{integer}−{part}\:{of}\:{x} \\ $$$${e}.{g}\:\lfloor\mathrm{0}.\mathrm{12}\rfloor=\mathrm{0},\:\lfloor\mathrm{5}.\mathrm{896}\rfloor=\mathrm{5} \\ $$$$ \\ $$ Answered by…

x-cosh-x-sinh-x-2-dx-

Question Number 132473 by physicstutes last updated on 14/Feb/21 $$\int\:\frac{{x}\:\mathrm{cosh}\:{x}}{\left(\mathrm{sinh}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$ Answered by mathmax by abdo last updated on 14/Feb/21 $$\mathrm{I}=\int\:\frac{\mathrm{xchx}}{\mathrm{sh}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\:\mathrm{u}^{'} \:=\frac{\mathrm{chx}}{\mathrm{sh}^{\mathrm{2}}…

Question-66938

Question Number 66938 by Cmr 237 last updated on 20/Aug/19 Commented by mathmax by abdo last updated on 21/Aug/19 $$\left.\mathrm{8}\right){by}\:{parts}\:\:\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:={xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\int\:{x}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={xln}\left(\mathrm{1}+{x}^{\mathrm{2}}…

Question-132469

Question Number 132469 by Algoritm last updated on 14/Feb/21 Answered by Olaf last updated on 15/Feb/21 $$\mathrm{Let}\:\Omega_{{i}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}_{{i}} \left(\mathrm{1}−\mathrm{ln}{x}_{{i}} \right)}{dx}_{{i}} \\ $$$$\mathrm{Let}\:{u}_{{i}} \:=\:\mathrm{1}−\mathrm{ln}{x}_{{i}}…