Menu Close

Category: Integration

Let-consider-an-integer-serie-a-n-x-n-given-by-a-n-H-n-k-1-n-1-k-1-Find-out-the-largest-domain-D-of-convergence-of-that-integer-serie-2-x-D-explicit-the-sum-S-x-of-the-a-n-x-n

Question Number 66814 by ~ À ® @ 237 ~ last updated on 20/Aug/19 $${Let}\:{consider}\:{an}\:{integer}\:{serie}\:\left\{{a}_{{n}} {x}^{{n}} \right\}\:{given}\:{by}\:\:{a}_{{n}} \:=\:{H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\: \\ $$$$\left.\mathrm{1}\right)\:{Find}\:{out}\:{the}\:{largest}\:{domain}\:{D}\:{of}\:{convergence}\:{of}\:{that}\:{integer}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:\forall\:{x}\in{D}\:\:,\:{explicit}\:{the}\:{sum}\:{S}\left({x}\right)\:{of}\:{the}\:\left\{{a}_{{n}}…

let-f-x-0-2-x-t-2-dt-with-x-0-1-calculate-f-x-2-calculate-g-x-0-2-dt-x-t-2-3-find-the-value-of-0-2-4-t-2-dt-and-0-2-dt-3-t-2-4-give-g-x-at-form-of-i

Question Number 66801 by mathmax by abdo last updated on 19/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{{x}+{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{dt}}{\:\sqrt{{x}+{t}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\left[{of}\:\int_{\mathrm{0}} ^{\mathrm{2}}…

very-nice-integral-4x-3-4x-2-4x-3-x-2-1-x-2-x-1-2-dx-

Question Number 132333 by liberty last updated on 13/Feb/21 $$\:\mathrm{very}\:\mathrm{nice}\:\mathrm{integral} \\ $$$$\int\:\frac{\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}? \\ $$$$ \\ $$ Answered by EDWIN88 last…

advanced-calculus-evaluation-0-ln-1-x-x-1-x-2-dx-solution-0-1-ln-1-x-x-1-x-2-dx-1-1-ln-1-x-x-1-x

Question Number 132324 by mnjuly1970 last updated on 13/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:{evaluation}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}\:^{\:\:} } ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\:\:\:\:{solution}: \\ $$$$\:\:\boldsymbol{\phi}=\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}=\boldsymbol{\phi}_{\mathrm{1}}…