Menu Close

Category: Integration

nice-calculus-prove-that-0-sin-2arctan-x-2-x-2-2-2-sinh-pix-dx-7-8-pi-2-12-

Question Number 132301 by mnjuly1970 last updated on 13/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\:{nice}…….{calculus}…. \\ $$$$\:\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}{arctan}\left(\frac{{x}}{\mathrm{2}}\right)\right)}{\left({x}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right){sinh}\left(\pi{x}\right)}{dx}=\frac{\mathrm{7}}{\mathrm{8}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$ \\ $$ Terms of…

Simplify-p-2-1-2-p-2-1-2-

Question Number 132302 by Lordose last updated on 13/Feb/21 $$\boldsymbol{\mathrm{Simplify}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{\Gamma}\left(\frac{\boldsymbol{\mathrm{p}}}{\mathrm{2}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\boldsymbol{\Gamma}\left(\frac{\boldsymbol{\mathrm{p}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$ Answered by Ar Brandon last updated on 13/Feb/21 $$\Gamma\left(\mathrm{m}\right)\Gamma\left(\mathrm{m}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2m}−\mathrm{1}} }\Gamma\left(\mathrm{2m}\right) \\…

Question-132287

Question Number 132287 by benjo_mathlover last updated on 13/Feb/21 Answered by Olaf last updated on 13/Feb/21 $$\mathrm{Let}\:{q}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}\right){dx}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}−\mathrm{4}\right){dx}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{u}\:=\:{x}−\mathrm{4} \\ $$$$\left(\mathrm{1}\right)\::\:{q}\:=\:\mathrm{2}\int_{−\mathrm{4}}…

0-1-1-x-x-2-x-3-dx-

Question Number 66740 by behi83417@gmail.com last updated on 19/Aug/19 $$\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mathmax by abdo last updated on 21/Aug/19…