Menu Close

Category: Integration

advanced-calculus-evaluation-0-ln-1-x-x-1-x-2-dx-solution-0-1-ln-1-x-x-1-x-2-dx-1-1-ln-1-x-x-1-x

Question Number 132324 by mnjuly1970 last updated on 13/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:{evaluation}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}\:^{\:\:} } ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx} \\ $$$$\:\:\:\:{solution}: \\ $$$$\:\:\boldsymbol{\phi}=\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}=\boldsymbol{\phi}_{\mathrm{1}}…

nice-calculus-prove-that-0-sin-2arctan-x-2-x-2-2-2-sinh-pix-dx-7-8-pi-2-12-

Question Number 132301 by mnjuly1970 last updated on 13/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\:{nice}…….{calculus}…. \\ $$$$\:\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}{arctan}\left(\frac{{x}}{\mathrm{2}}\right)\right)}{\left({x}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right){sinh}\left(\pi{x}\right)}{dx}=\frac{\mathrm{7}}{\mathrm{8}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$ \\ $$ Terms of…

Simplify-p-2-1-2-p-2-1-2-

Question Number 132302 by Lordose last updated on 13/Feb/21 $$\boldsymbol{\mathrm{Simplify}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{\Gamma}\left(\frac{\boldsymbol{\mathrm{p}}}{\mathrm{2}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\boldsymbol{\Gamma}\left(\frac{\boldsymbol{\mathrm{p}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$ Answered by Ar Brandon last updated on 13/Feb/21 $$\Gamma\left(\mathrm{m}\right)\Gamma\left(\mathrm{m}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}^{\mathrm{2m}−\mathrm{1}} }\Gamma\left(\mathrm{2m}\right) \\…