Question Number 132090 by rs4089 last updated on 11/Feb/21 $${evaluate}\:\int_{−\infty} ^{\infty} \frac{{cosx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Olaf last updated on 11/Feb/21 $$\Omega\:=\:\int_{−\infty} ^{+\infty}…
Question Number 132091 by rs4089 last updated on 11/Feb/21 $${evaluate}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{da}.{db}.{dc}.{dd}.{df}}{\mathrm{1}−{abcdf}} \\ $$ Answered…
Question Number 66550 by Tony Lin last updated on 17/Aug/19 $$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\frac{{y}}{\mathrm{2}}\:} ^{\frac{\mathrm{1}}{\mathrm{2}}\:} {e}^{−{x}^{\mathrm{2}} } {dxdy}=? \\ $$ Commented by ~ À ® @…
Question Number 132082 by liberty last updated on 11/Feb/21 $$\:\mathrm{Solve}\:\int\:\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:?\: \\ $$ Answered by EDWIN88 last updated on 11/Feb/21 $$\mathrm{Ostrogradski}\:\mathrm{method} \\ $$$$\mathrm{Consider}\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{ax}^{\mathrm{3}} +\mathrm{bx}}{\left(\mathrm{x}^{\mathrm{2}}…
Question Number 66540 by mhmd last updated on 16/Aug/19 $${graph}\:{the}\:{function}\:{r}^{\mathrm{2}} ={cos}\left(\mathrm{2}\theta\right)\:{and}\:{find}\:{the}\:{area}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66536 by aliesam last updated on 16/Aug/19 $$\int{ln}^{\mathrm{10}} \left({x}\right)\:{sin}^{\mathrm{7}} \left({x}\right)\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132070 by bramlexs22 last updated on 10/Feb/21 $$\mathrm{I}=\int\:\frac{\mathrm{x}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$ Answered by liberty last updated on 10/Feb/21 $$\mathrm{I}=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{d}\left(\mathrm{x}^{\mathrm{2}} \right)}{\left(\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}}…
Question Number 66520 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{length}\:{r}=\mathrm{2}/\mathrm{1}−{cos}\theta\:\:\:\:\:\:\:\:\:{if}\:\theta\:{between}\:{pi}/\mathrm{2}\:{to}\:{pi} \\ $$ Commented by kaivan.ahmadi last updated on 16/Aug/19 $${l}=\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \sqrt{\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{d}\theta \\…
Question Number 66517 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{area}\:{cos}\left(\mathrm{2}\theta\right) \\ $$ Commented by MJS last updated on 16/Aug/19 $$\mathrm{you}\:\mathrm{must}\:\mathrm{give}\:\mathrm{borders}… \\ $$ Answered by Smail…
Question Number 66502 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{area}\:{about}\:{cos}\left(\mathrm{2}\theta\right) \\ $$ Answered by mr W last updated on 16/Aug/19 $${A}=\mathrm{8}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{r}^{\mathrm{2}} {d}\theta}{\mathrm{2}} \\…