Question Number 131991 by mnjuly1970 last updated on 10/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:\:{calculus}…\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{4} \\ $$$$\:\:\:\:\phi_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left(\mathrm{1}−{t}\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}}…
Question Number 66446 by ~ À ® @ 237 ~ last updated on 15/Aug/19 $$\:\:{Find}\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{E}\left({x}\right)}\:−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$ Commented by mathmax by abdo last…
Question Number 907 by Yugi last updated on 19/Apr/15 $${Determine}\:{the}\:{results}\:{of}\:{the}\:{following}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}_{\mathrm{1}} =\int\sqrt{\frac{{a}+{e}^{{x}} }{{a}−{e}^{{x}} }}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}_{\mathrm{2}} =\int\frac{\left({tanx}\right)\mid{tanx}\mid}{\mathrm{1}−{tan}^{\mathrm{2}} {x}}{dx} \\ $$ Commented by prakash jain…
Question Number 131974 by Salman_Abir last updated on 10/Feb/21 Answered by liberty last updated on 10/Feb/21 $$\mathrm{vol}\:=\frac{\mathrm{1}}{\mathrm{3}}\pi\mathrm{h}\left(\mathrm{R}^{\mathrm{2}} +\mathrm{Rr}+\mathrm{r}^{\mathrm{2}} \right) \\ $$$$ \\ $$ Answered by…
Question Number 901 by 123456 last updated on 17/Apr/15 $$\underset{\mathrm{2}} {\overset{+\infty} {\int}}\frac{{dx}}{\mathrm{2}+{e}^{{x}} } \\ $$ Answered by prakash jain last updated on 17/Apr/15 $${e}^{{x}} ={t}…
Question Number 131969 by mnjuly1970 last updated on 10/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…\:{math}\:\:{analysis}… \\ $$$$\:\:\:\:\phi=\:\:\int_{−\infty} ^{\:+\infty} \frac{{xsin}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}{dx}=? \\ $$$$\:\:\:\:\:\phi=\int_{−\infty} ^{\:+\infty} \frac{{xsin}\left({x}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\:\:\:\:\:\:\:\overset{{x}+\mathrm{1}={t}} {=}\int_{−\infty} ^{\:+\infty} \frac{\left({t}−\mathrm{1}\right){sin}\left({t}−\mathrm{1}\right)}{{t}^{\mathrm{2}}…
Question Number 131961 by Zack_ last updated on 10/Feb/21 $$\int\left({sin}^{\mathrm{4}} {x}.{cos}^{\mathrm{4}} {x}\right){dx} \\ $$ Answered by liberty last updated on 10/Feb/21 $$\mathrm{I}=\int\:\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{2}} \mathrm{dx} \\…
Question Number 131957 by rs4089 last updated on 10/Feb/21 $${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{sinx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 10/Feb/21 $$\int_{−\infty} ^{\infty}…
Question Number 66405 by ~ À ® @ 237 ~ last updated on 14/Aug/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66404 by ~ À ® @ 237 ~ last updated on 14/Aug/19 Commented by mathmax by abdo last updated on 14/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}}…