Menu Close

Category: Integration

Question-131919

Question Number 131919 by Algoritm last updated on 09/Feb/21 Answered by Dwaipayan Shikari last updated on 09/Feb/21 $${x}={u}^{\mathrm{6}} \\ $$$$=\mathrm{6}\int\frac{{u}^{\mathrm{5}} }{{u}^{\mathrm{2}} +{u}^{\mathrm{3}} }{du}=\mathrm{6}\int\frac{{u}^{\mathrm{3}} }{{u}+\mathrm{1}}{du}=\mathrm{6}\int\left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right){du}−\mathrm{6}{log}\left({u}\right)…

let-I-n-0-e-nt-1-e-t-n-1-dt-n-from-N-prove-the-existence-of-I-n-2-find-lim-n-I-n-

Question Number 66351 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\…