Menu Close

Category: Integration

let-I-0-pi-4-e-2t-cos-4-t-dt-and-J-0-pi-4-e-2t-sin-4-tdt-1-calculate-I-J-and-I-J-2-find-the-value-of-I-and-J-

Question Number 66334 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{e}^{−\mathrm{2}{t}} \:{cos}^{\mathrm{4}} {t}\:{dt}\:{and}\:{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{e}^{−\mathrm{2}{t}} \:{sin}^{\mathrm{4}} {tdt} \\ $$$$\left.\mathrm{1}\right){calculate}\:\:{I}+{J}\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J}. \\…

let-A-n-0-1-x-n-1-x-dx-1-calculate-A-0-and-A-1-2-prove-that-n-N-3-2n-A-n-2nA-n-1-3-find-A-n-interms-of-n-

Question Number 66332 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}}{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{A}_{\mathrm{0}} \:{and}\:{A}_{\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\forall{n}\in{N}^{\bigstar} \:\:\:\:\left(\mathrm{3}+\mathrm{2}{n}\right){A}_{{n}} =\mathrm{2}{nA}_{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{A}_{{n}}…

let-I-n-0-1-x-n-e-x-dx-with-n-integr-natural-1-calculate-I-0-I-1-and-I-2-2-find-arelation-between-I-n-and-I-n-3-find-I-n-interms-of-n-

Question Number 66330 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} \:{dx}\:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{\mathrm{0}} \:,\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{arelation}\:{between}\:{I}_{{n}} \:{and}\:{I}_{{n}} \\…

0-1-x-x-2-x-x-2-x-2-y-2-dydx-B-x-2-y-2-dxdy-B-x-y-R-2-y-x-x-2-x-2-y-2-x-0-B-2-d-d-B-

Question Number 789 by 123456 last updated on 14/Mar/15 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{x}−{x}^{\mathrm{2}} } {\overset{\sqrt{{x}−{x}^{\mathrm{2}} }} {\int}}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dydx}=? \\ $$$$\int\underset{\mathrm{B}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dxdy}\:\:\:\:\:\mathrm{B}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} :{y}\geqslant{x}−{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}}…