Question Number 787 by 123456 last updated on 22/Mar/15 $$\underset{{r}=\mathrm{1}} {\overset{+\infty} {\sum}}\sqrt{\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{5}+\Gamma\left(\frac{\mathrm{2}}{\mathrm{2}+{x}^{\mathrm{2}{r}} }\right){dx}} \\ $$ Commented by 123456 last updated on 13/Mar/15 $$\underset{{r}=\mathrm{1}}…
Question Number 131852 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{analysis}\:\left({II}\right)… \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\varnothing=\int_{\mathrm{1}} ^{\:\mathrm{10}} {x}^{\mathrm{2}} {d}\left(\left\{{x}\right\}\right)=? \\ $$$$\:\:\:\:\:\:\:\left\{{x}\right\}\:::\:{fractional}\:{part}\:{of}\:{x}\:… \\ $$$$ \\ $$ Answered by…
Question Number 131849 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\:\:\:{calculus}\:\left({I}\right)\:\ast\ast\ast \\ $$$$\:\:\:{please}\:\:{evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\phi=\int\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right){ln}\left({tan}\left({x}\right)\right)} \\ $$$$\:\:\:\:\:\:{Trinity}\:{College} \\ $$$$\:\:\:\:\:\:\:{Cambridge}\:….\mathrm{1897}… \\ $$ Answered by mindispower last updated…
Question Number 66308 by mathmax by abdo last updated on 12/Aug/19 $${find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{3}\right)\sqrt{−{x}^{\mathrm{2}} −\mathrm{4}{x}}} \\ $$ Commented by prof Abdo imad last updated on 16/Aug/19 $${let}\:{A}\:=\int\:\frac{{dx}}{\left({x}+\mathrm{3}\right)\sqrt{−{x}^{\mathrm{2}}…
Question Number 66309 by mathmax by abdo last updated on 12/Aug/19 $${calculate}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$ Commented by prof Abdo imad last updated on 15/Aug/19…
Question Number 131816 by mathmax by abdo last updated on 08/Feb/21 $$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{x}^{\mathrm{n}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\geqslant\mathrm{2}\:\:\mathrm{integr} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 131810 by Fikret last updated on 08/Feb/21 $${f}\left({x}\right)=\begin{cases}{−\mathrm{2}{x}\:\:\:\:\:\:\:\:\:\:;\:\:{x}\leqslant\mathrm{0}}\\{{f}\left({x}−\mathrm{1}\right)\:\:\:;\:\:{x}>\mathrm{0}}\end{cases} \\ $$$$ \\ $$$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{100}} {\int}}{f}\left({x}\right){dx}\:=? \\ $$ Answered by mr W last updated on…
Question Number 131807 by Fikret last updated on 08/Feb/21 $${f}\left({x}\right)=\mathrm{2}−{x}\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right){dx}\:\:\Rightarrow\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right){dx}=? \\ $$$$ \\ $$$$ \\ $$ Commented by Fikret last updated…
Question Number 66264 by mathmax by abdo last updated on 12/Aug/19 $${for}\:{x}>\mathrm{0}\:{what}\:{is}\:{the}\:{relation}\:{between}\:\Gamma\left({x}\right)\:{and}\:\Gamma\left(\frac{\mathrm{1}}{{x}}\right)? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66253 by mathmax by abdo last updated on 11/Aug/19 $${prove}\:{by}\:{Rieman}\:{sum}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{xdx}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented by mathmax by abdo last updated on 12/Aug/19…