Menu Close

Category: Integration

Show-that-d-dy-g-1-y-g-2-y-f-x-y-dx-g-1-y-g-2-y-f-y-x-y-dx-g-2-y-f-g-2-y-y-g-1-y-f-g-1-y-y-using-Leibniz-s-rule-and-the-chain-rule-where-g-1-and-g-2-are-dif

Question Number 1602 by 112358 last updated on 25/Aug/15 Showthat$$\frac{{d}}{{dy}}\int_{{g}_{\mathrm{1}} \left({y}\right)} ^{{g}_{\mathrm{2}} \left({y}\right)} {f}\left({x},{y}\right){dx}=\int_{{g}_{\mathrm{1}} \left({y}\right)} ^{{g}_{\mathrm{2}} \left({y}\right)} \frac{\partial{f}}{\partial{y}}\left({x},{y}\right){dx}+{g}_{\mathrm{2}} ^{'} \left({y}\right){f}\left({g}_{\mathrm{2}} \left({y}\right),{y}\right)−{g}_{\mathrm{1}} ^{'} \left({y}\right){f}\left({g}_{\mathrm{1}}…

Let-and-denote-functions-of-x-where-is-odd-and-is-even-x-R-Is-it-generally-true-that-integrating-an-odd-function-gives-an-even-function-and-vice-versa-1-x-dx-1-x-C-and-2-x-d

Question Number 1582 by 112358 last updated on 21/Aug/15 LetϕandεdenotefunctionsofxwhereϕisoddandεisevenxR.Isitgenerallytruethatintegratinganoddfunctiongivesanevenfunctionandviceversa?ϕ1(x)dx=ε1(x)+C?$${and}\:\int\phi_{\mathrm{2}} \left({x}\right){dx}=\varepsilon_{\mathrm{2}}…

Question-67070

Question Number 67070 by mRDv143 last updated on 22/Aug/19 Commented by Prithwish sen last updated on 23/Aug/19 $$\int\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}}}\:\mathrm{dx}=\int\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} .\mathrm{x}\:\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{1}}}\:\mathrm{dx} \

Question-67069

Question Number 67069 by mRDv143 last updated on 22/Aug/19 Commented by Prithwish sen last updated on 22/Aug/19 (1+logx)21+xlogx+logx+x(logx)2dx=(1+logx)2(1+logx)(1+xlogx)dx$$=\int\frac{\mathrm{1}+\mathrm{logx}}{\mathrm{1}+\mathrm{xlogx}}\:\mathrm{dx}\:\:\mathrm{put}\:\mathrm{1}+\mathrm{xlogx}\:=\:\mathrm{u}\Rightarrow\left(\mathrm{1}+\mathrm{logx}\right)\mathrm{dx}=\:\mathrm{du}…