Menu Close

Category: Integration

let-f-a-0-pi-2-dx-a-sinx-a-real-1-find-a-explicit-form-for-f-a-2-calculste-also-g-a-0-pi-2-dx-a-sinx-2-and-h-a-0-pi-2-dx-a-sinx-3-3-give-f-n-a-at

Question Number 68869 by mathmax by abdo last updated on 16/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{a}+{sinx}}\:\:\:\:\:\left({a}\:{real}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{also}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{2}} }\:\:{and}\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{3}} } \\…

0-x-2-1-x-2-4-dx-

Question Number 134301 by bramlexs22 last updated on 02/Mar/21 $$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{4}} }\:{dx} \\ $$ Answered by EDWIN88 last updated on 02/Mar/21 $$\mathrm{replace}\:\mathrm{x}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{yields}\:…

F-0-16-arctan-x-1-x-2-dx-

Question Number 134303 by bramlexs22 last updated on 02/Mar/21 $$\mathcal{F}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{16}\:\mathrm{arctan}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$ Answered by Ñï= last updated on 02/Mar/21 $$\mathcal{F}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{16}\:\mathrm{arctan}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}}…

I-x-n-ax-b-dx-H-x-4-2x-1-dx-

Question Number 134289 by bramlexs22 last updated on 02/Mar/21 $$\mathrm{I}=\int\:\frac{\mathrm{x}^{\mathrm{n}} }{\:\sqrt{\mathrm{ax}+\mathrm{b}}}\:\mathrm{dx} \\ $$$$\mathrm{H}=\int\:\frac{\mathrm{x}^{\mathrm{4}} }{\:\sqrt{\mathrm{2x}+\mathrm{1}}}\:\mathrm{dx} \\ $$ Answered by EDWIN88 last updated on 02/Mar/21 $$\mathrm{I}_{\mathrm{n}} =\:\frac{\mathrm{2x}^{\mathrm{n}}…

Prove-0-x-a-1-e-x-dx-1-2-a-a-1-a-1-

Question Number 134291 by Lordose last updated on 02/Mar/21 $$ \\ $$$$\:\boldsymbol{\mathrm{Prove}}\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{a}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} }\mathrm{dx}\:=\:\left(\mathrm{1}−\mathrm{2}^{−\mathrm{a}} \right)\boldsymbol{\zeta}\left(\mathrm{a}+\mathrm{1}\right)\boldsymbol{\Gamma}\left(\mathrm{a}+\mathrm{1}\right) \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…