Question Number 62274 by aliesam last updated on 18/Jun/19 $$\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{x}^{\mathrm{2}} } \:{dx} \\ $$ Commented by maxmathsup by imad last updated on 19/Jun/19…
Question Number 62266 by aliesam last updated on 18/Jun/19 $$\int\frac{\mathrm{2}{sin}\left({x}\right)+\mathrm{3}{cos}\left({x}\right)}{\mathrm{3}{sin}\left({x}\right)+\mathrm{4}{cos}\left({x}\right)}{dx} \\ $$ Commented by maxmathsup by imad last updated on 19/Jun/19 $${let}\:{A}\:=\int\:\:\:\frac{\mathrm{2}{sinx}\:+\mathrm{3}{cosx}}{\mathrm{3}{sinx}\:+\mathrm{4}{cosx}}\:{dx}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}\:=\int\:\:\:\frac{\frac{\mathrm{4}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{1}−{t}^{\mathrm{2}}…
Question Number 62262 by maxmathsup by imad last updated on 18/Jun/19 $${find}\:{the}\:{value}\:{of}\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {sint}}{\:\sqrt{{t}}}{dt}\:\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} {cos}\left({t}\right)}{\:\sqrt{{t}}}{dt}\:\:,{study}\:{first}\:{the}\:{convergence}. \\ $$ Commented by maxmathsup…
Question Number 127789 by AyaDouae last updated on 02/Jan/21 Commented by khaki last updated on 02/Jan/21 $$\mathrm{how}\:\mathrm{cn}\:\mathrm{i}\:\mathrm{upload}\:\mathrm{my}\:\mathrm{qudstion}\:\mathrm{please}\:\mathrm{help}\:\mathrm{me} \\ $$ Commented by mr W last updated…
Question Number 62252 by hovea cw last updated on 18/Jun/19 $$\int\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)/\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{limit}\:=\left\{\:\mathrm{0}>\mathrm{2}\right\} \\ $$ Commented by maxmathsup by imad last updated on 18/Jun/19…
Question Number 62251 by hovea cw last updated on 18/Jun/19 $$\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{trig}\:\mathrm{substitution}\:\mathrm{only} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 127779 by Bird last updated on 02/Jan/21 $${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} } \\ $$ Answered by Dwaipayan Shikari last updated on 02/Jan/21…
Question Number 127776 by Bird last updated on 02/Jan/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 127774 by Bird last updated on 02/Jan/21 $${calculate}\:\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 02/Jan/21…
Question Number 127777 by Bird last updated on 02/Jan/21 $${explicite}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{{x}^{\mathrm{2}} −{x}+{a}}{dx} \\ $$$${with}\:\:\:{a}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$ Answered by mathmax by abdo last updated on…