Menu Close

Category: Integration

Question-63410

Question Number 63410 by aliesam last updated on 03/Jul/19 Commented by mathmax by abdo last updated on 03/Jul/19 2)letI=xdx1+sinxchangementtan(x2)=tgive$${I}\:=\:\int\:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}\:=\:\mathrm{2}\int\:\:\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}}\:{dt}\:=\mathrm{2}\:\int\:\:\:\frac{{arctan}\left({t}\right)}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:\:…

x-1-x-2-x-3-x-4-x-5-x-6-dx-

Question Number 128888 by bemath last updated on 11/Jan/21 (x1)(x2)(x3)(x4)(x5)(x6)dx=? Answered by Olaf last updated on 11/Jan/21 Ω=(x1)(x2)(x3)(x4)(x5)(x6)dxΩ=(1+Ax4+Bx5+Cx6)dx$$\mathrm{A}\:=\:\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\left(−\mathrm{1}\right)\left(−\mathrm{2}\right)}\:=\:\mathrm{3} \