Menu Close

Category: Integration

Question-62232

Question Number 62232 by aliesam last updated on 18/Jun/19 Commented by maxmathsup by imad last updated on 18/Jun/19 $${we}\:{have}\:\mid\alpha+\beta\:{e}^{{i}\theta} \mid\:=\mid\alpha\:+\beta{cos}\theta\:+{i}\beta{sin}\theta\mid\:=\sqrt{\left(\alpha+\beta{cos}\theta\right)^{\mathrm{2}} \:+\beta^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\:\Rightarrow \\ $$$${ln}\left(\mid\alpha+{ie}^{{i}\theta}…

1-1-x-x-2-x-3-dx-2-1-tgx-sinx-dx-3-e-x-ln-1-1-x-2-dx-4-sinx-1-sinx-sin2x-dx-

Question Number 62227 by behi83417@gmail.com last updated on 17/Jun/19 $$\mathrm{1}.\int\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{2}.\int\:\:\:\frac{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{tgx}}}}{\boldsymbol{\mathrm{sinx}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{3}.\int\:\:\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} .\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{4}.\int\:\:\frac{\boldsymbol{\mathrm{sinx}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by maxmathsup…

let-f-x-0-t-2-x-6-t-6-dt-with-x-gt-0-1-calculate-f-x-2-calculate-g-x-0-t-2-x-6-t-6-2-dt-3-find-values-of-integrals-0-t-2-t-6-8-dt-

Question Number 62220 by maxmathsup by imad last updated on 17/Jun/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}}…

calculate-D-e-x-2-y-2-x-2-y-2-z-2-dxdydz-with-D-x-y-z-R-3-0-x-1-1-y-2-and-2-z-3-

Question Number 62213 by maxmathsup by imad last updated on 17/Jun/19 $${calculate}\:\int\int\int_{{D}} \:{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:{with} \\ $$$${D}\:=\left\{\left({x},{y},{z}\right)\in{R}^{\mathrm{3}} \:/\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$ Commented…

calculate-x-3-x-2-x-2-x-1-dx-

Question Number 62207 by maxmathsup by imad last updated on 17/Jun/19 $${calculate}\:\int\:\:\:\:\:\:\frac{{x}+\mathrm{3}}{\left({x}−\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:{dx} \\ $$ Commented by maxmathsup by imad last updated on 18/Jun/19 $${I}\:=\int\:\frac{{x}−\mathrm{2}\:+\mathrm{5}}{\left({x}−\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}}…