Question Number 127616 by bramlexs22 last updated on 31/Dec/20 $$\:\mathrm{If}\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{6}\:,\:\mathrm{then}\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \mathrm{f}\left(\mathrm{5}−\mathrm{x}\right)\:\mathrm{dx}\:?\: \\ $$ Commented by liberty last updated on 31/Dec/20 $$\:\mathrm{let}\:\mathrm{5}−\mathrm{x}\:=\:\mathrm{X}\:\Rightarrow\mathrm{dx}\:=\:−\mathrm{dX}\: \\…
Question Number 127618 by bramlexs22 last updated on 31/Dec/20 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2021}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2020}} \right)}\:?\: \\ $$ Answered by Dwaipayan Shikari last updated on 31/Dec/20 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{2021}} }−\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2020}} \right)}{dx}=−\frac{{x}^{−\mathrm{2020}}…
Question Number 127604 by Algoritm last updated on 31/Dec/20 Answered by Lordose last updated on 31/Dec/20 Commented by Algoritm last updated on 31/Dec/20 $$? \\…
Question Number 127605 by pticantor last updated on 31/Dec/20 $${find}\:{arg}\left({z}\right) \\ $$$${where}\:\boldsymbol{{z}}=\mathrm{1}+\boldsymbol{{cos}}\alpha+{icos}\beta \\ $$ Answered by MJS_new last updated on 31/Dec/20 $$\mathrm{arg}\:\left(\mathrm{1}+\mathrm{cos}\:\alpha\:+\mathrm{i}\:\mathrm{cos}\:\beta\right)\:= \\ $$$$=\frac{\pi}{\mathrm{2}}\mathrm{sign}\:\left(\mathrm{cos}\:\beta\right)\:−\mathrm{arctan}\:\frac{\mathrm{1}+\mathrm{cos}\:\alpha}{\mathrm{cos}\:\beta} \\…
Question Number 62056 by maxmathsup by imad last updated on 14/Jun/19 $$\left.\mathrm{1}\right)\:{calculate}\:{I}\:=\int{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx}\:{and}\:{J}\:=\:\int{ln}\left(\mathrm{1}−{ix}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\:=\int\:{ln}\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 127587 by bramlexs22 last updated on 31/Dec/20 Answered by ebi last updated on 31/Dec/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 127575 by Ar Brandon last updated on 30/Dec/20 $$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{n}} \mathrm{dt} \\ $$ Answered by Ar Brandon last updated on…
Question Number 127543 by Ar Brandon last updated on 30/Dec/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2021}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 30/Dec/20…
Question Number 127539 by mnjuly1970 last updated on 30/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:{calculus}… \\ $$$$\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:{dx}=? \\ $$$$ \\ $$ Answered by Lordose…
Question Number 62001 by maxmathsup by imad last updated on 13/Jun/19 $${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cos}\left({x}\right)}{dx}\: \\ $$ Commented by maxmathsup by imad last updated on…