Question Number 62000 by maxmathsup by imad last updated on 13/Jun/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}+{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 127528 by bramlexs22 last updated on 30/Dec/20 $$\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$ Answered by liberty last updated on 30/Dec/20 $$\:{Let}\:{L}\:=\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:{dx}\: \\…
Question Number 61986 by necx1 last updated on 13/Jun/19 $${Find}\:{the}\:{area}\:{bounded}\:{by}\:{y}\left({x}+\mathrm{2}\right)={x}^{\mathrm{4}} , \\ $$$${x}=\mathrm{0},{y}=\mathrm{0}\:{and}\:{x}=\mathrm{3} \\ $$ Answered by mr W last updated on 13/Jun/19 $${y}=\frac{{x}^{\mathrm{4}} }{{x}+\mathrm{2}}…
Question Number 61981 by maxmathsup by imad last updated on 13/Jun/19 $${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{nx}} \:{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\right){dx}\:\:\:{calculate}\:{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} \\ $$ Commented by maxmathsup by imad…
Question Number 61978 by maxmathsup by imad last updated on 13/Jun/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{3}} \right){dt}\:\:{with}\:\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{t}^{\mathrm{3}} \right){dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 61979 by maxmathsup by imad last updated on 13/Jun/19 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right)\:{dx} \\ $$ Commented by maxmathsup by imad last updated on 13/Jun/19…
Question Number 61976 by maxmathsup by imad last updated on 13/Jun/19 $${let}\:{A}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{dxdy}\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} \\…
Question Number 193036 by ali009 last updated on 02/Jun/23 $${if}\:{f}\left({x}\right)={x}\sqrt{\left(\mathrm{16}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$${find}\:\int_{\mathrm{0}.\mathrm{5}} ^{\mathrm{3}.\mathrm{5}} {f}\left({x}\right)\:{dx}\:{using}\:{trapezoidal}\:{method} \\ $$$${then}\:{find}\:{the}\:{max}\:{and}\:{min}\:{value}\:{of}\:{the}\:{error} \\ $$$$\:{with}\:{the}\:{given}\:{n}\:{steps} \\ $$$${x}_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}_{{n}} \right) \\…
Question Number 61966 by aliesam last updated on 12/Jun/19 $$\int\frac{\mathrm{1}}{{e}^{\mathrm{2}{x}} −{e}^{−\mathrm{2}{x}} }\:{dx} \\ $$ Commented by kaivan.ahmadi last updated on 12/Jun/19 $$\int\frac{\mathrm{1}}{{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{{e}^{\mathrm{2}{x}} }}{dx}=\int\frac{{e}^{\mathrm{2}{x}} }{{e}^{\mathrm{2}{x}}…
Question Number 127495 by mnjuly1970 last updated on 30/Dec/20 Answered by panky0214 last updated on 01/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com