Menu Close

Category: Integration

Question-192933

Question Number 192933 by mnjuly1970 last updated on 31/May/23 Answered by MM42 last updated on 01/Jun/23 $${ln}\left(\mathrm{1}−{x}\right)={u}\Rightarrow\frac{−\mathrm{1}}{\mathrm{1}−{x}}{dx}={du}\:\:\&{i}\:{x}^{{n}−\mathrm{1}} {dx}={dv}\Rightarrow\frac{{x}^{{n}} }{{n}}={v} \\ $$$$\Rightarrow{I}_{{n}} =\int{x}^{{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right){dx}=\frac{{x}^{{n}} {ln}\left(\mathrm{1}−{x}\right)}{{n}}\:+\frac{\mathrm{1}}{{n}}\int\:\frac{{x}^{{n}} }{\mathrm{1}−{x}}{dx}…

Question-192916

Question Number 192916 by Mingma last updated on 31/May/23 Answered by ARUNG_Brandon_MBU last updated on 31/May/23 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}−\mathrm{sin2}{x}}{\mathrm{1}+\mathrm{cos}{x}}+\frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{1}+\mathrm{sin}{x}}\right){dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\mathrm{cos}{x}}+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}{x}}{\mathrm{1}+\mathrm{cos}{x}}\left(\mathrm{sin}{xdx}\right)+\mathrm{2}\int_{\mathrm{0}}…

consider-the-space-Pn-with-H-f-f-Pn-and-0-1-f-x-x-0-Show-that-H-is-a-SUBSPACE-of-Pn-

Question Number 61842 by psyche last updated on 10/Jun/19 $$\boldsymbol{{consider}}\:\boldsymbol{{the}}\:\boldsymbol{{space}}\:\boldsymbol{{P}}{n}\:\boldsymbol{{with}}\:\boldsymbol{{H}}=\left\{{f}:{f}\subset{Pn}\:\boldsymbol{{and}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right)\partial{x}=\mathrm{0}\right\}\:.\:{S}\boldsymbol{{how}}\:\boldsymbol{{that}}\:\boldsymbol{{H}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{S}}{UBSPACE}\:{of}\:{Pn}. \\ $$ Commented by arcana last updated on 10/Jun/19 $$\mathrm{define}\:\mathrm{P}_{{n}} \\ $$ Terms…

advanced-calculus-prove-1023-134-0-x-2-5-x-2-5-1-x-2-1-1024x-2-dx-pi-golden-ratio-

Question Number 127370 by mnjuly1970 last updated on 29/Dec/20 $$\:\:\:\:\:\:\:\:\:…\:\:{advanced}\:\:{calculus}\:\:.. \\ $$$$\:\:{prove}:: \\ $$$$\:\:\:\frac{\mathrm{1023}}{\mathrm{134}}\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\frac{\mathrm{2}}{\mathrm{5}}} +{x}^{\frac{−\mathrm{2}}{\mathrm{5}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{1024}{x}^{\mathrm{2}} \right)}{dx}=\frac{\pi}{\varphi} \\ $$$$\:\:\:\varphi:\:{golden}\:\:{ratio}… \\ $$$$ \\…

tan-x-tan-2-x-1-dx-

Question Number 127368 by I want to learn more last updated on 29/Dec/20 $$\int\:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}}{\:\sqrt{\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\mathrm{1}}}\:\:\mathrm{dx} \\ $$ Answered by liberty last updated on 29/Dec/20 $$\:{let}\:\rightarrow\begin{cases}{\mathrm{tan}\:{x}\:\geqslant\mathrm{0}}\\{\mathrm{tan}^{\mathrm{2}}…

dx-1-x-2-1-x-2-

Question Number 127355 by bemath last updated on 29/Dec/20 $$\:\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=?\: \\ $$ Answered by liberty last updated on 29/Dec/20 $$\:{I}=\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:;\:\left[\:{x}\:=\:\mathrm{sin}\:{h}\:\right]\: \\…