Menu Close

Category: Integration

dx-2-sin-x-

Question Number 61719 by aliesam last updated on 06/Jun/19 $$\int\frac{{dx}}{\mathrm{2}+{sin}\left({x}\right)} \\ $$ Commented by maxmathsup by imad last updated on 07/Jun/19 $${let}\:{A}\:=\:\int\:\:\frac{{dx}}{\mathrm{2}+{sinx}}\:\Rightarrow{A}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\int\:\:\frac{\mathrm{1}}{\mathrm{2}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }…

Nice-1-ln-2-x-x-ln-x-dx-x-1-x-3-dx-4-x-x-dx-

Question Number 127237 by bramlexs22 last updated on 28/Dec/20 $$\:{Nice}…\int\:\frac{\sqrt{\mathrm{1}−\mathrm{ln}\:^{\mathrm{2}} \left({x}\right)}}{{x}\:\mathrm{ln}\:\left({x}\right)}\:{dx}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\sqrt{\frac{{x}}{\mathrm{1}−{x}^{\mathrm{3}} }}\:{dx}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\sqrt{\frac{\mathrm{4}−{x}}{{x}}}\:{dx}\: \\ $$ Commented by bramlexs22 last updated on 28/Dec/20…

calculus-I-complex-analysis-calculate-0-ln-x-x-2-3x-2-dx-ln-2-2-2-

Question Number 127224 by mnjuly1970 last updated on 28/Dec/20 $$\:\:…\:{calculus}\:\:\left({I}\right)\:−{complex}\:{analysis}… \\ $$$$\:\:\:\:{calculate}\:::\: \\ $$$$\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}}\:{dx}=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by mindispower…

a-0-4-1-tgx-dx-b-0-1-1-lnx-dx-

Question Number 61674 by behi83417@gmail.com last updated on 06/Jun/19 $$\mathrm{a}.\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{tgx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$$$\mathrm{b}.\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\mathrm{1}} {\int}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{lnx}}}\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by maxmathsup by imad last updated…

tan-x-dx-

Question Number 61667 by aliesam last updated on 06/Jun/19 $$\int\sqrt{{tan}\left({x}\right)}\:{dx}\: \\ $$ Answered by MJS last updated on 06/Jun/19 $$\int\sqrt{\mathrm{tan}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{tan}\:{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}}…