Menu Close

Category: Limits

lim-n-2n-1-2n-3-4n-1-2n-2n-2-4n-

Question Number 205716 by universe last updated on 28/Mar/24 limn(2n+1)(2n+3)(4n+1)(2n)(2n+2)(4n)=? Answered by MM42 last updated on 28/Mar/24 (2n)(2n+2)(4n)(2n1)(2n+1)(4n1)<A<(2n+2)(2n+4)(4n+2)(2n+1)(2n+3)(4n+1)4n+1(2n1)A<A<4n+2(2n)A$$\Rightarrow\frac{\mathrm{4}{n}+\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}<{A}^{\mathrm{2}}…

lim-n-2n-1-2n-3-4n-1-2n-2n-2-4n-

Question Number 205580 by universe last updated on 25/Mar/24 limn(2n+1)(2n+3)(4n+1)(2n)(2n+2)(4n)=? Commented by lepuissantcedricjunior last updated on 26/Mar/24 limn(2n+1)×(2n+3)××(4n+1)(2n)×(2n+2)×..×(4n)$$=\underset{\boldsymbol{{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\mathrm{2}\boldsymbol{{n}}\right)\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{2}\right)…\left(\mathrm{4}\boldsymbol{{n}}\right)\left(\mathrm{4}\boldsymbol{{n}}+\mathrm{1}\right)}{\left[\left(\mathrm{2}\boldsymbol{{n}}\right)\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{2}\right)….\left(\mathrm{4}\boldsymbol{{n}}\right)\right]^{\mathrm{2}}…

A-lim-x-0-sinx-x-3-

Question Number 205448 by mathlove last updated on 21/Mar/24 A=limx0sinxx3=? Answered by namphamduc last updated on 21/Mar/24 $${A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\left({x}\right)}{{x}^{\mathrm{3}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}\right)}{{x}}.{x}^{\mathrm{4}}…

Question-205237

Question Number 205237 by universe last updated on 13/Mar/24 Answered by Berbere last updated on 13/Mar/24 n2+x2n2$$\frac{{x}}{\mathrm{1}+{x}}\leqslant\mathrm{1}\Rightarrow\frac{{nx}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}\right)\left({n}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)}\leqslant{n}.\mathrm{1}.\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{{n}^{\mathrm{2}}…

Question-205134

Question Number 205134 by universe last updated on 09/Mar/24 Answered by pi314 last updated on 09/Mar/24 nx=y$$\Leftrightarrow{A}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}} \frac{{f}\left(\frac{{y}}{{n}}\right)}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}{dy}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}}…