Menu Close

Category: Limits

Question-107310

Question Number 107310 by bemath last updated on 10/Aug/20 Answered by bobhans last updated on 10/Aug/20 bobhans$$\mathrm{L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}} \right)−\mathrm{1}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{2}}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}}…

Question-107222

Question Number 107222 by bobhans last updated on 09/Aug/20 Answered by john santu last updated on 09/Aug/20 JS$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{7}^{\mathrm{2x}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{x}} }\right)\right)^{\frac{\mathrm{2}}{\mathrm{x}}} =\:\mathrm{7}^{\mathrm{4}} \:×\underset{{x}\rightarrow\infty}…

Question-107163

Question Number 107163 by bobhans last updated on 09/Aug/20 Answered by john santu last updated on 09/Aug/20 JSlimx0cosx.limx0x1+5x2(1sinx851)=$$\mathrm{1}\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}\sqrt{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{x}}}}{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{40}}−\mathrm{1}\right)}=…