Question Number 38206 by prof Abdo imad last updated on 22/Jun/18 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\:{coth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ Commented by math khazana by abdo last updated on…
Question Number 169273 by cortano1 last updated on 27/Apr/22 $$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\int_{\mathrm{1}} ^{\:{x}} \left(\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{2}}−\mathrm{2}{x}\right){dx}}{\mathrm{5}{x}}\:=? \\ $$ Answered by qaz last updated on 28/Apr/22 $$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\int_{\mathrm{1}}…
Question Number 169272 by cortano1 last updated on 27/Apr/22 Commented by greougoury555 last updated on 27/Apr/22 $$\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Commented by infinityaction last updated on…
Question Number 169242 by Skabetix last updated on 26/Apr/22 Answered by Skabetix last updated on 26/Apr/22 $${please}\:{help} \\ $$ Answered by kowalsky78 last updated on…
Question Number 169204 by mathlove last updated on 26/Apr/22 $${if}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{ax}+{b}}{{x}−\mathrm{1}}=\mathrm{5} \\ $$$${faind}\:{volve}\:{of}\:{a}+{b}=? \\ $$$$ \\ $$ Commented by Rasheed.Sindhi last updated on 26/Apr/22…
Question Number 103654 by Study last updated on 16/Jul/20 $$\:{if}\:{a},{b}>\mathrm{1}\:\:{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}}=??? \\ $$ Answered by Worm_Tail last updated on 16/Jul/20 $$\:\:\:\:\:\:{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}}={lim}\left(\frac{\mathrm{1}}{{a}}{ln}\left({b}−{x}\right)^{\frac{\mathrm{1}}{{x}}} \right)…
Question Number 103655 by Study last updated on 16/Jul/20 $${li}\underset{{x}\rightarrow\infty} {{m}}\left(−{ln}\frac{\mathrm{10}}{\mathrm{17}}\right)^{\frac{\mathrm{17}}{\mathrm{10}}{x}} =??? \\ $$ Commented by JDamian last updated on 16/Jul/20 $$\infty \\ $$ Commented…
Question Number 169191 by qaz last updated on 25/Apr/22 $$\mathrm{Calculate}\:\:::\:\underset{\mathrm{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{\left(\pi−\mathrm{arccos}\:\mathrm{x}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{x}\right)}\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169166 by infinityaction last updated on 25/Apr/22 $$\:\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{for}\:\mathrm{arbitrary}\:\alpha\geqslant\mathrm{0}\:\mathrm{the}\:\mathrm{limit}\: \\ $$$$\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}^{\alpha} +\mathrm{2}^{\alpha} +\mathrm{3}^{\alpha} +……\mathrm{n}^{\alpha} }{\mathrm{n}^{\alpha} }−\frac{\mathrm{n}}{\mathrm{1}+\alpha}\right) \\ $$ Commented by safojontoshtemirov last updated…
Question Number 169148 by mathlove last updated on 25/Apr/22 $$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{\pi{cos}\mathrm{2}{x}−\mathrm{1}}{\mathrm{1}+{cosx}}=? \\ $$ Commented by infinityaction last updated on 25/Apr/22 $$\:\:\:\:\:{p}\:=\:\:\:\frac{\pi\mathrm{cos}\:\mathrm{2}\pi−\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:\pi} \\ $$$$\:\:\:\:\:\:{p}\:\:=\:\:\frac{\pi×\mathrm{1}−\mathrm{1}}{\mathrm{1}−\mathrm{1}}\:=\:\frac{\pi−\mathrm{1}}{\mathrm{0}}\:=\:\infty \\ $$$$…