Menu Close

Category: Limits

Question-203059

Question Number 203059 by hassanmpsy last updated on 08/Jan/24 Commented by witcher3 last updated on 11/Jan/24 $$\mathrm{U}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)}{\mathrm{n}^{\mathrm{2}} \left(\mathrm{2}+\mathrm{2}\frac{\mathrm{k}}{\mathrm{n}}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{f}\left(\frac{\mathrm{k}}{\mathrm{n}}\right) \

Question-202530

Question Number 202530 by Calculusboy last updated on 28/Dec/23 Answered by MathematicalUser2357 last updated on 29/Dec/23 =limx0log(1+x)1+xxx2$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\partial^{\mathrm{2}} }{\partial^{\mathrm{2}} {x}}\left(\mathrm{log}\left(\mathrm{1}+{x}\right)^{\mathrm{1}+{x}}…

Question-202161

Question Number 202161 by Calculusboy last updated on 22/Dec/23 Answered by som(math1967) last updated on 22/Dec/23 (m+1)!(1+3+5++2m+32m(m+2)(1+2+3++m+1)=(m+1)!m+22×2{1+(m+21)}2m(m+2)(m+1)(m+2)2=(m+1)!(m+2)2m(m+2)2(m+1)$$=\frac{{m}\left({m}+\mathrm{1}\right)×\left({m}−\mathrm{1}\right)!}{{m}\left({m}+\mathrm{1}\right)}…