Question Number 169294 by cortano1 last updated on 28/Apr/22 Commented by qaz last updated on 28/Apr/22 $$\mathrm{Same}\:\mathrm{as}\::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{tan}\:\mathrm{x}−\mathrm{tan}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{7}} }=−\frac{\mathrm{1}}{\mathrm{14}} \\ $$ Commented by cortano1 last…
Question Number 103749 by bobhans last updated on 17/Jul/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}^{{n}} \:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:=\:? \\ $$ Answered by bramlex last updated on 17/Jul/20 $${set}\:{x}\:=\:\frac{\pi}{\mathrm{2}^{{n}} }\:\Rightarrow\mathrm{2}^{{n}} \:=\:\frac{\pi}{{x}}\:;{x}\rightarrow\mathrm{0}…
Question Number 38206 by prof Abdo imad last updated on 22/Jun/18 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\:{coth}\left({x}\right)−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ Commented by math khazana by abdo last updated on…
Question Number 169273 by cortano1 last updated on 27/Apr/22 $$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\int_{\mathrm{1}} ^{\:{x}} \left(\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{2}}−\mathrm{2}{x}\right){dx}}{\mathrm{5}{x}}\:=? \\ $$ Answered by qaz last updated on 28/Apr/22 $$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\int_{\mathrm{1}}…
Question Number 169272 by cortano1 last updated on 27/Apr/22 Commented by greougoury555 last updated on 27/Apr/22 $$\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Commented by infinityaction last updated on…
Question Number 169242 by Skabetix last updated on 26/Apr/22 Answered by Skabetix last updated on 26/Apr/22 $${please}\:{help} \\ $$ Answered by kowalsky78 last updated on…
Question Number 169204 by mathlove last updated on 26/Apr/22 $${if}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{ax}+{b}}{{x}−\mathrm{1}}=\mathrm{5} \\ $$$${faind}\:{volve}\:{of}\:{a}+{b}=? \\ $$$$ \\ $$ Commented by Rasheed.Sindhi last updated on 26/Apr/22…
Question Number 103654 by Study last updated on 16/Jul/20 $$\:{if}\:{a},{b}>\mathrm{1}\:\:{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}}=??? \\ $$ Answered by Worm_Tail last updated on 16/Jul/20 $$\:\:\:\:\:\:{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}}={lim}\left(\frac{\mathrm{1}}{{a}}{ln}\left({b}−{x}\right)^{\frac{\mathrm{1}}{{x}}} \right)…
Question Number 103655 by Study last updated on 16/Jul/20 $${li}\underset{{x}\rightarrow\infty} {{m}}\left(−{ln}\frac{\mathrm{10}}{\mathrm{17}}\right)^{\frac{\mathrm{17}}{\mathrm{10}}{x}} =??? \\ $$ Commented by JDamian last updated on 16/Jul/20 $$\infty \\ $$ Commented…
Question Number 169191 by qaz last updated on 25/Apr/22 $$\mathrm{Calculate}\:\:::\:\underset{\mathrm{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{\left(\pi−\mathrm{arccos}\:\mathrm{x}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{x}\right)}\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com