Question Number 167085 by mathlove last updated on 06/Mar/22 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−\sqrt{{x}^{\mathrm{2}} +{x}}\right)^{{x}} =? \\ $$ Commented by cortano1 last updated on 06/Mar/22 $$\:\mathrm{L}=\mathrm{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{\mathrm{x}^{\mathrm{2}}…
Question Number 167028 by cortano1 last updated on 04/Mar/22 $$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{2x}}−\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{3x}}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$ Answered by qaz last updated on 05/Mar/22 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}+\mathrm{2x}}−\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{3x}}}{\mathrm{x}^{\mathrm{2}} } \\…
Question Number 35939 by rahul 19 last updated on 26/May/18 $$\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\left(\:\frac{{a}\mathrm{sin}\:\left({x}−\mathrm{4}\right)\:+\:\mathrm{cos}\:\pi{x}\:−\mathrm{1}}{{x}−\mathrm{4}}\:\right)^{\frac{{x}−\mathrm{2}}{{x}−\mathrm{3}}} =\:\mathrm{4} \\ $$$${Find}\:'{a}'\:? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18 $${t}={x}−\mathrm{4}…
Question Number 101471 by I want to learn more last updated on 02/Jul/20 Commented by mr W last updated on 02/Jul/20 $$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\frac{{x}}{{x}−\mid{x}\mid} \\…
Question Number 167004 by qaz last updated on 04/Mar/22 $$\mathrm{calculate}\:::\:\:\underset{\mathrm{x}\rightarrow\sqrt{\pi}} {\mathrm{lim}}\int_{\sqrt{\pi}} ^{\mathrm{x}} \frac{\left(\mathrm{x}^{\mathrm{2}} +\sqrt{\pi}\mathrm{t}\right)\mathrm{e}^{\mathrm{t}^{\mathrm{2}} } }{\left(\mathrm{x}−\sqrt{\pi}\right)\left(\mathrm{x}^{\mathrm{2}} +\pi\right)\mathrm{t}^{\mathrm{2}} \mathrm{lnt}}\mathrm{dt}=? \\ $$ Terms of Service Privacy Policy…
Question Number 167002 by qaz last updated on 04/Mar/22 $$\mathrm{calculate}\:\:::\:\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}8}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{e}^{\mathrm{x}} \centerdot\mathrm{sin}\:\left(\mathrm{tx}\right)\centerdot\mathrm{sin}\:\left(\mathrm{2tx}\right)\centerdot\mathrm{cos}\:\left(\mathrm{3tx}\right)\centerdot\mathrm{cos}\:\left(\mathrm{4tx}\right)\mathrm{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 166975 by henderson last updated on 03/Mar/22 $$\mathrm{hi}\:!\: \\ $$$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\underset{\boldsymbol{{x}}\rightarrow−\infty} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}}} }{\boldsymbol{{x}}}\:=\:??? \\ $$ Commented by null last updated on…
Question Number 101422 by john santu last updated on 02/Jul/20 $$\underset{\mathrm{h}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \right)−\mathrm{sin}\:\left(\alpha^{\mathrm{2}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \mathrm{sin}\:\left(\alpha+\mathrm{h}\right)−\mathrm{cos}\:\left(\alpha^{\mathrm{2}} \right)\mathrm{sin}\:\left(\alpha\right)\right.}\:=? \\ $$ Commented by john santu last updated on…
Question Number 166926 by mathlove last updated on 02/Mar/22 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{5}^{{n}} }{{n}!}=? \\ $$ Answered by JDamian last updated on 02/Mar/22 $$\mathrm{0} \\ $$ Answered…
Question Number 166922 by qaz last updated on 02/Mar/22 $$\mathrm{calculate}\:\::\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} −\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{ln16}−\mathrm{3} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com