Menu Close

Category: Limits

De-montrer-que-Demonstrate-that-lim-x-0-e-x-1-ln-x-1-cos-x-1-2-

Question Number 168819 by AbdoulayeLelouche last updated on 18/Apr/22 $$\mathrm{D}\acute {\mathrm{e}montrer}\:\mathrm{que}: \\ $$$$\mathrm{Demonstrate}\:\mathrm{that}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{e}^{{x}} −\mathrm{1}−\mathrm{ln}\:\left({x}+\mathrm{1}\right)}{\mathrm{cos}\:\left({x}\right)−\mathrm{1}}\right)\:=\:−\mathrm{2} \\ $$ Answered by alephzero last updated on…

Calculate-lim-x-0-2x-1-2x-1-e-t-2-dt-1-1-e-t-2-dt-x-2-8e-Don-t-use-L-Hospital-s-rule-

Question Number 168696 by qaz last updated on 16/Apr/22 $$\mathrm{Calculate}\:\:\:::\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{2x}−\mathrm{1}} ^{\mathrm{2x}+\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}−\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{8e}\:\:\:,\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{Hospital}'\mathrm{s}\:\mathrm{rule}. \\ $$ Answered by aleks041103…

If-lim-x-0-cos-m-mx-cos-n-nx-m-2-n-2-mn-x-2-1-find-m-2-n-2-4-mn-

Question Number 168576 by cortano1 last updated on 13/Apr/22 $$\:\:\:{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{{m}} \left({mx}\right)−\mathrm{cos}\:^{{n}} \left({nx}\right)}{\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}\right){x}^{\mathrm{2}} \:}\:=\:\mathrm{1} \\ $$$$\:{find}\:\frac{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}}{{mn}}\:. \\ $$ Commented by blackmamba…

Calculate-lim-x-x-a-x-a-x-b-x-b-x-a-b-2x-a-b-

Question Number 168575 by qaz last updated on 13/Apr/22 $$\mathrm{Calculate}\:::\:\:\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\left(\mathrm{x}+\mathrm{a}\right)^{\mathrm{x}+\mathrm{a}} \left(\mathrm{x}+\mathrm{b}\right)^{\mathrm{x}+\mathrm{b}} }{\left(\mathrm{x}+\mathrm{a}+\mathrm{b}\right)^{\mathrm{2x}+\mathrm{a}+\mathrm{b}} }=? \\ $$ Answered by LEKOUMA last updated on 14/Apr/22 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}^{{x}+{a}}…

Question-168555

Question Number 168555 by mathlove last updated on 13/Apr/22 Answered by LEKOUMA last updated on 13/Apr/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{3}}+{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−{x}^{\mathrm{4}} }{\mathrm{3}{x}^{\mathrm{4}} }=−\frac{\mathrm{1}}{\mathrm{3}}…

lim-x-0-1-cos7x-x-2-

Question Number 168464 by Altaf180 last updated on 11/Apr/22 $${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{1}−{cos}\mathrm{7}{x}}{{x}^{\mathrm{2}} }=? \\ $$ Commented by safojontoshtemirov last updated on 11/Apr/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}2}\left({sin}^{\mathrm{2}} \frac{\mathrm{7}{x}}{\mathrm{2}}\right)/{x}^{\mathrm{2}} =\underset{{x}\rightarrow\mathrm{0}}…