Menu Close

Category: Limits

lim-x-0-tan-pi-4-x-1-x-

Question Number 102020 by Dwaipayan Shikari last updated on 06/Jul/20 limx0(tan(π4x))1x Answered by john santu last updated on 06/Jul/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\left(\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−{x}\right)−\mathrm{1}\right)\right)^{\frac{\mathrm{1}}{{x}}} \

Given-2-functions-f-and-g-n-times-derivable-within-the-open-interval-R-and-verify-the-property-f-x-0-f-k-x-0-0-g-x-0-g-k-x-0-0-k-1-2-n-1-Show-that-lim-x-x-0-f-x-

Question Number 101977 by Ar Brandon last updated on 05/Jul/20 Given2functions,fandg,ntimesderivablewithintheopeninterval,Randverifythepropertyf(x0)=f(k)(x0)=0,g(x0)=g(k)(x0)=0,k{1,2,,n1}$$\mathrm{Show}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{x}_{\mathrm{0}} } {\mathrm{lim}}\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{g}\left(\mathrm{x}\right)}=\frac{\mathrm{f}^{\left(\mathrm{n}\right)}…

Question-167421

Question Number 167421 by infinityaction last updated on 16/Mar/22 Answered by mindispower last updated on 16/Mar/22 $${cot}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={cot}^{\mathrm{2}} \left({s}\pi\right)=\left({i}\frac{{e}^{{is}} +{e}^{−{is}} }{{e}^{{is}} −{e}^{−{is}} }\right)^{\mathrm{2}} = \

Question-167295

Question Number 167295 by mnjuly1970 last updated on 12/Mar/22 Answered by qaz last updated on 12/Mar/22 limn((2n)!nnn!)1/n$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\mathrm{2n}\right)!}{\mathrm{n}^{\mathrm{n}} \mathrm{n}!}\centerdot\frac{\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \left(\mathrm{n}−\mathrm{1}\right)!}{\left(\mathrm{2n}−\mathrm{2}\right)!} \