Menu Close

Category: Limits

lim-x-1-1-2-1-3-1-n-1-1-3-1-5-1-2n-1-

Question Number 101239 by  M±th+et+s last updated on 01/Jul/20 limx(1+12+13++1n1+13+15+12n+1) Answered by mathmax by abdo last updated on 01/Jul/20 1+12+13+.+1n=Hn$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+….+\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…..+\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}−…−\frac{\mathrm{1}}{\mathrm{2n}}…

lim-x-0-sin-ln-1-x-ln-1-sin-x-sin-4-x-2-

Question Number 101148 by john santu last updated on 30/Jun/20 limx0sin(ln(1+x))ln(1+sinx)sin4(x2)=? Commented by bramlex last updated on 01/Jul/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{cos}\:\left(\mathrm{ln}\left(\mathrm{1}+{x}\right)\right)}{\mathrm{1}+{x}}\:−\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}}{\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4sin}\:^{\mathrm{3}} \left(\frac{{x}}{\mathrm{2}}\right)×\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)}…