Menu Close

Category: Limits

a-lim-x-pi-4-cos-x-sin-x-3-2-2-1-sin-2x-b-lim-x-0-sin-x-1-x-

Question Number 34540 by rahul 19 last updated on 07/May/18 $$\left.{a}\right)\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{3}} −\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:=? \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{{x}}} \:=\:? \\ $$ Commented by abdo mathsup 649 cc…

f-x-1-sin-2x-1-2sin-x-x-g-x-2x-2x-find-lim-x-0-g-f-x-

Question Number 100036 by bobhans last updated on 24/Jun/20 $$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}−\sqrt{\mathrm{1}−\mathrm{2sin}\:\mathrm{x}}}{\mathrm{x}} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\:\sqrt{\mathrm{2x}}\:.\:\mathrm{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right) \\ $$ Answered by john santu last updated on 24/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\mathrm{g}\left(\underset{{x}\rightarrow\mathrm{0}}…

lim-x-x-x-sin-2x-

Question Number 100037 by bobhans last updated on 24/Jun/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\sqrt{\mathrm{x}}\:\mathrm{sin}\:\left(\mathrm{2x}\right)\:? \\ $$ Commented by bramlex last updated on 24/Jun/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\sqrt{{x}}\:=\:\infty\:\wedge\:−\mathrm{1}\leqslant\:\mathrm{sin}\:\mathrm{2}{x}\:\leqslant\:\mathrm{1} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}\sqrt{{x}}\:\mathrm{sin}\:\mathrm{2}{x}\:=\:\infty\:…

lim-x-0-xsin-1-x-

Question Number 100027 by bemath last updated on 24/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{xsin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:?\: \\ $$ Commented by john santu last updated on 24/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{x}\:=\:\mathrm{0}\:\&\:−\mathrm{1}\leqslant\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{then}\:\underset{{x}\rightarrow\mathrm{0}}…

Question-99972

Question Number 99972 by bobhans last updated on 24/Jun/20 Commented by bemath last updated on 24/Jun/20 $$\mathrm{b}\:=\:\mathrm{9}\:\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{a}}{\mathrm{2}\sqrt{\mathrm{ax}+\mathrm{9}}}\:=\:\frac{\mathrm{1}}{\mathrm{3}};\:\frac{\mathrm{a}}{\mathrm{6}}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{a}\:=\:\mathrm{2}\:.\:\Rightarrow\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{\mathrm{9x}−\mathrm{4}}−\sqrt{\mathrm{5}}}{\mathrm{x}−\mathrm{1}}\:=\:\frac{\mathrm{9}}{\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$ \\ $$…