Menu Close

Category: Limits

Lim-x-e-tan-x-Z-A-

Question Number 164364 by Zaynal last updated on 16/Jan/22 $$\boldsymbol{{Lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-98823

Question Number 98823 by john santu last updated on 16/Jun/20 Commented by bramlex last updated on 16/Jun/20 $${L}'{Hopital}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}+{x}\mathrm{cos}\:{x}}{\mathrm{3}{x}^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{x}+\mathrm{cos}\:{x}−{x}\mathrm{sin}\:{x}}{\mathrm{6}{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}}…

lim-n-1-n-n-1-n-2-n-n-1-n-

Question Number 98788 by Ar Brandon last updated on 16/Jun/20 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\left[\:\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)…\left(\mathrm{n}+\mathrm{n}\right)_{} ^{} \right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$ Answered by Ar Brandon last updated on 16/Jun/20 Answered…

if-x-is-a-selected-number-of-the-number-from-20-99-then-what-is-probalility-x-3-x-is-divided-by-12-

Question Number 98773 by john santu last updated on 16/Jun/20 $$\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{selected}\:\mathrm{number}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{from}\:\mathrm{20}−\mathrm{99},\:\mathrm{then}\:\mathrm{what} \\ $$$$\mathrm{is}\:\mathrm{probalility}\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\mathrm{12}?\: \\ $$ Answered by mr W last…

lim-x-0-x-1-sin-x-ln-1-x-2-x-1-x-2-1-3-1-

Question Number 98768 by bemath last updated on 16/Jun/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{1}}\:\mathrm{sin}\:\mathrm{x}+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)−\mathrm{x}}{\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{1}} \\ $$ Answered by john santu last updated on 16/Jun/20 Commented by…

Question-98616

Question Number 98616 by bemath last updated on 15/Jun/20 Answered by bobhans last updated on 15/Jun/20 $$\underset{\mathrm{n}\rightarrow\infty\:} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{9}+\mathrm{9}}}\right)^{\mathrm{n}} \:=\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{18}}}\right)^{\mathrm{n}} \\ $$$$=\:\sqrt{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5}}{\mathrm{18}}\right)^{\mathrm{n}} }\:=\:\mathrm{0}\:.\:\blacksquare \\…

lim-x-x-2-e-x-

Question Number 33073 by NECx last updated on 10/Apr/18 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} {e}^{−{x}} \\ $$ Commented by abdo imad last updated on 10/Apr/18 $${for}\:{all}\:{plynome}\:{p}\left({x}\right)\:{not}\:{o}\:{wehave}\:{lim}_{{x}\rightarrow+\infty} {p}\left({x}\right){e}^{−\alpha{x}} =\mathrm{0}…

lim-n-k-1-n-sin-1-n-k-

Question Number 164122 by qaz last updated on 14/Jan/22 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=? \\ $$ Answered by mathmax by abdo last updated on 15/Jan/22 $$\mathrm{we}\:\mathrm{know}\:\:\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}}…

Given-the-function-f-x-ln-x-x-1-a-State-the-domain-D-f-of-f-b-Find-lim-x-ln-x-x-1-State-its-asymptotes-c-Draw-up-a-variation-table-for-the-curve-y-f-x-

Question Number 98539 by Rio Michael last updated on 14/Jun/20 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{function} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{ln}\:{x}}{{x}−\mathrm{1}} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{State}\:\mathrm{the}\:\mathrm{domain}\:{D}_{{f}} \:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Find}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{x}}{{x}−\mathrm{1}}.\:\mathrm{State}\:\mathrm{its}\:\mathrm{asymptotes}. \\ $$$$\left(\mathrm{c}\right)\:\mathrm{Draw}\:\mathrm{up}\:\mathrm{a}\:\mathrm{variation}\:\mathrm{table}\:\mathrm{for}\:\mathrm{the}\:\mathrm{curve}\:{y}\:=\:{f}\left({x}\right).\: \\ $$ Answered by…