Menu Close

Category: Limits

Question-98506

Question Number 98506 by bemath last updated on 14/Jun/20 Commented by john santu last updated on 14/Jun/20 $$\mathrm{set}\:\frac{\mathrm{1}}{{x}}\:=\:{z}\:,\:{z}\rightarrow\mathrm{0} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{7}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}{z}^{\mathrm{5}} \right)}{\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\:\mathrm{tan}\:\left(\mathrm{2}{z}^{\mathrm{3}} \right)}\:=\:\mathrm{7}\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{z}^{\mathrm{2}}…

lim-x-pi-2-2tan-2-x-3-2tan-2-x-10-cot-x-

Question Number 163966 by bobhans last updated on 12/Jan/22 $$\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{3}}−\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{10}}}{\mathrm{cot}\:\mathrm{x}}\:=? \\ $$ Answered by cortano1 last updated on 12/Jan/22 $$\:{set}\:{x}=\frac{\pi}{\mathrm{2}}+{h}\Rightarrow\begin{cases}{\mathrm{tan}\:{x}=−\mathrm{cot}\:{h}}\\{\mathrm{cot}\:{x}=−\mathrm{tan}\:{h}}\end{cases} \\ $$$$\:\underset{{h}\rightarrow\mathrm{0}}…

lim-x-1-e-1-x-2-1-x-1-

Question Number 163961 by qaz last updated on 12/Jan/22 $$\underset{\mathrm{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}} }{\mathrm{x}−\mathrm{1}}=? \\ $$ Answered by bobhans last updated on 12/Jan/22 $$\:\mathrm{x}−\mathrm{1}=\mathrm{u}\Rightarrow\mathrm{x}=\mathrm{u}+\mathrm{1} \\…

lim-x-0-2-7cot-2-x-7-7cot-2-x-tan-x-

Question Number 163960 by bobhans last updated on 12/Jan/22 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}+\mathrm{7cot}\:^{\mathrm{2}} \mathrm{x}}−\sqrt{\mathrm{7}+\mathrm{7cot}\:^{\mathrm{2}} \mathrm{x}}}{\mathrm{tan}\:\mathrm{x}}\:=? \\ $$ Answered by cortano1 last updated on 12/Jan/22 Terms of Service…

lim-x-0-cos-3x-cos-3x-sin-2-x-5-

Question Number 163938 by cortano1 last updated on 12/Jan/22 $$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(−\mathrm{3}{x}\right)−\mathrm{cos}\:\left(\mathrm{3}{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\sqrt{\mathrm{5}}\:\right)}=? \\ $$ Answered by 770551415 last updated on 12/Jan/22 $$\boldsymbol{{Solution}}:\:{cos}\:{y}\:{is}\:{even}\: \\ $$$$\:\:{cos}\left(−\mathrm{3}{x}\right)={cos}\left(\mathrm{3}{x}\right)\: \\…

let-u-n-and-v-n-be-sequences-defined-by-u-0-9-u-n-1-1-2-u-n-3-v-n-u-n-6-Calculate-P-n-i-0-n-V-i-in-terms-of-n-the-deduce-Q-n-i-0-n-u-i-using-the-above-expr

Question Number 98380 by Rio Michael last updated on 13/Jun/20 $$\mathrm{let}\:\left\{{u}_{{n}} \right\}\:\mathrm{and}\:\left\{{v}_{{n}} \right\}\:\mathrm{be}\:\mathrm{sequences}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:{u}_{\mathrm{0}} \:=\:\mathrm{9},\:{u}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}{u}_{{n}} −\mathrm{3}. \\ $$$${v}_{{n}} \:=\:{u}_{{n}} \:+\:\mathrm{6}. \\ $$$$\mathrm{Calculate}\:{P}_{{n}} \:=\:\underset{{i}=\mathrm{0}}…