Question Number 163825 by cortano1 last updated on 11/Jan/22 $$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{2}{x}−\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{3}{x}−\mathrm{3}{x}}\:=?\: \\ $$ Answered by Ar Brandon last updated on 11/Jan/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan2}{x}−\mathrm{2}{x}}{\mathrm{sin3}{x}−\mathrm{3}{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{2}{x}+\frac{\left(\mathrm{2}{x}\right)^{\mathrm{3}} }{\mathrm{3}}−\mathrm{2}{x}\right)}{\mathrm{3}{x}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{3}}…
Question Number 163775 by mathlove last updated on 10/Jan/22 Commented by MJS_new last updated on 10/Jan/22 $$\mathrm{no} \\ $$ Answered by phanphuoc last updated on…
Question Number 163769 by mathlove last updated on 10/Jan/22 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+\sqrt[{{n}}]{{n}!}\right)}{\:\sqrt[{{n}}]{\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 98166 by M±th+et+s last updated on 11/Jun/20 $$\underset{{x}\rightarrow\infty} {{lim}}\left[{cos}\left(\mathrm{2}\pi\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{a}} \right)\right]^{{x}^{\mathrm{2}} } \\ $$$${a}\in\mathbb{R} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163690 by cortano1 last updated on 09/Jan/22 $$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{8}{x}\:−\:\mathrm{3}{x}\:\mathrm{csc}\:\mathrm{2}{x}}{\mathrm{2}{x}^{\mathrm{2}} }\:=? \\ $$ Answered by blackmamba last updated on 09/Jan/22 $$\:\:\mathcal{X}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{8}{x}−\mathrm{3}{x}}{\mathrm{2}{x}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}{x}} \\…
Question Number 163675 by alcohol last updated on 09/Jan/22 $${how}\:{do}\:{we}\:{find}\:{the}\:{sum}\:{of}\:{the}\:{terms}\:{after}\: \\ $$$${the}\:{n}^{{th}} \:{term}\:{of}\:{a}\:{GP} \\ $$ Commented by mr W last updated on 09/Jan/22 $${make}\:{the}\:\left({n}+\mathrm{1}\right)^{{th}} \:{term}\:{to}\:{the}\:{first}…
Question Number 163666 by Zaynal last updated on 09/Jan/22 $$\boldsymbol{\mathrm{lim}}\:_{\boldsymbol{{x}}\rightarrow\boldsymbol{\pi}} \:\:\left(\frac{\boldsymbol{{x}}^{\boldsymbol{\pi}} \:−\:\boldsymbol{\pi}^{\boldsymbol{{x}}} }{\boldsymbol{{x}}−\boldsymbol{\pi}}\right)\:=?? \\ $$$$\ll\mathrm{zaynal}\gg \\ $$ Answered by mahdipoor last updated on 09/Jan/22 $${hop}\Rightarrow\underset{{x}\rightarrow\pi}…
Question Number 163657 by mathlove last updated on 09/Jan/22 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} −{e}}{{x}}=? \\ $$ Answered by mr W last updated on 09/Jan/22 $$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({e}^{\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}\right)}{{x}}} \right)'…
Question Number 163658 by mathlove last updated on 09/Jan/22 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}{n}}….×\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}}=? \\ $$ Answered by Ar Brandon last updated on 09/Jan/22 $$\mathcal{A}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}{n}}….×\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}} \\ $$$$\mathrm{ln}\mathcal{A}=\underset{{n}\rightarrow\infty}…
Question Number 98114 by malwaan last updated on 11/Jun/20 $$\mathrm{1}\:\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:^{\mathrm{3}} \sqrt{\mathrm{5}\boldsymbol{{x}}^{\mathrm{3}} }\:=\:? \\ $$$$\mathrm{2}\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left(\mathrm{1}\:+\:\frac{\boldsymbol{{n}}}{\boldsymbol{{x}}\:+\:\boldsymbol{\alpha}}\right)^{\boldsymbol{{x}}} ;\boldsymbol{\alpha}\:\boldsymbol{{is}}\:\boldsymbol{{constant}} \\ $$ Answered by mahdi last updated on…