Question Number 163042 by qaz last updated on 03/Jan/22
Question Number 163043 by qaz last updated on 03/Jan/22
Question Number 163039 by qaz last updated on 03/Jan/22
Question Number 97398 by RAMANA last updated on 07/Jun/20
Question Number 162925 by qaz last updated on 02/Jan/22 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\left[\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}}} −\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}}}} \right]=? \…
Question Number 162926 by qaz last updated on 02/Jan/22
Question Number 97355 by bagjamath last updated on 07/Jun/20 Commented by PRITHWISH SEN 2 last updated on 07/Jun/20
Question Number 162827 by saboorhalimi last updated on 01/Jan/22 Answered by Ar Brandon last updated on 01/Jan/22
Question Number 31709 by gunawan last updated on 13/Mar/18
Question Number 31708 by gunawan last updated on 13/Mar/18