Menu Close

Category: Limits

lim-x-0-1-x-4-1-x-x-2-2-x-3-3-1-x-x-2-2-x-3-3-1-x-x-2-2-x-3-3-x-4-4-1-x-x-2-2-x-3-3-x-4-4-

Question Number 162925 by qaz last updated on 02/Jan/22 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\left[\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}}} −\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{4}}}} \right]=? \

Question-162827

Question Number 162827 by saboorhalimi last updated on 01/Jan/22 Answered by Ar Brandon last updated on 01/Jan/22 g(x)=limr0((x+1)r+1xr+1)1r$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{g}\left({x}\right)}{{x}}=\underset{{r}\rightarrow\mathrm{0},\:{x}\rightarrow\infty} {\mathrm{lim}}{x}^{\mathrm{1}+\frac{\mathrm{1}}{{r}}−\mathrm{1}}…