Menu Close

Category: Limits

lim-n-2-2-2-1-1-2-n-1-2-2-2-3-1-2-1-n-2-2-n-1-2-n-1-1-2-

Question Number 160394 by qaz last updated on 29/Nov/21 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }} \left(\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{3}} −\mathrm{1}}\right)^{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{n}−\mathrm{2}}} } \centerdot…\centerdot\left(\frac{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{2}^{\mathrm{n}} −\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =? \\ $$ Terms of…

Show-that-the-sequence-1-1-2-1-4-1-2-n-n-0-is-convergent-

Question Number 29310 by tawa tawa last updated on 07/Feb/18 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}:\:\:\:\:\:\left\{\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:…\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\right\}_{\mathrm{n}\:\:=\:\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\:\mathrm{is}\:\mathrm{convergent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-94764

Question Number 94764 by Hamida last updated on 20/May/20 Answered by prakash jain last updated on 20/May/20 $$\mathrm{1a}\:\left(\mathrm{i}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}=\mathrm{1}\:\left(\mathrm{top}\:\mathrm{point}\:\mathrm{of}\:\mathrm{semicircle}\right) \\ $$$$\mathrm{1a}\left(\mathrm{ii}\right) \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{−}…

Question-94730

Question Number 94730 by i jagooll last updated on 20/May/20 Answered by john santu last updated on 20/May/20 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\mathrm{e}^{\mathrm{ln}\left(\mathrm{x}\right)^{\mathrm{sin}\:\mathrm{x}} } =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{e}^{\mathrm{sin}\:\mathrm{x}.\:\mathrm{ln}\left(\mathrm{x}\right)} \\…

lim-x-a-x-1-m-a-1-m-x-1-n-a-1-n-Don-t-use-L-hospital-rules-

Question Number 29180 by A1B1C1D1 last updated on 05/Feb/18 $$\underset{\mathrm{x}\:\rightarrow\:\mathrm{a}} {\mathrm{lim}}\:\left(\frac{\sqrt[{\mathrm{m}}]{\mathrm{x}}\:−\:\sqrt[{\mathrm{m}}]{\mathrm{a}}}{\:\sqrt[{\mathrm{n}}]{\mathrm{x}}\:−\:\sqrt[{\mathrm{n}}]{\mathrm{a}}}\right) \\ $$$$\left.\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{hospital}\:\mathrm{rules}\::-\right) \\ $$ Answered by Rasheed.Sindhi last updated on 05/Feb/18 $$\mathrm{Formula} \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{a}}…